These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 23047055)
1. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials. Pham AL; Doyle FM; Sedlak DL Water Res; 2012 Dec; 46(19):6454-62. PubMed ID: 23047055 [TBL] [Abstract][Full Text] [Related]
2. Inhibitory effect of dissolved silica on H₂O₂ decomposition by iron(III) and manganese(IV) oxides: implications for H₂O₂-based in situ chemical oxidation. Pham AL; Doyle FM; Sedlak DL Environ Sci Technol; 2012 Jan; 46(2):1055-62. PubMed ID: 22129132 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of Benzene by Persulfate in the Presence of Fe(III)- and Mn(IV)-Containing Oxides: Stoichiometric Efficiency and Transformation Products. Liu H; Bruton TA; Li W; Buren JV; Prasse C; Doyle FM; Sedlak DL Environ Sci Technol; 2016 Jan; 50(2):890-8. PubMed ID: 26687229 [TBL] [Abstract][Full Text] [Related]
4. In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials. Liu H; Bruton TA; Doyle FM; Sedlak DL Environ Sci Technol; 2014 Sep; 48(17):10330-6. PubMed ID: 25133603 [TBL] [Abstract][Full Text] [Related]
5. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts. Hanna K; Kone T; Ruby C Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299 [TBL] [Abstract][Full Text] [Related]
6. The role of soil organic matters and minerals on hydrogen peroxide decomposition in the soil. Molamahmood HV; Qin J; Zhu Y; Deng M; Long M Chemosphere; 2020 Jun; 249():126146. PubMed ID: 32086061 [TBL] [Abstract][Full Text] [Related]
7. Activation of Peroxymonosulfate by Subsurface Minerals. Yu M; Teel AL; Watts RJ J Contam Hydrol; 2016 Aug; 191():33-43. PubMed ID: 27209171 [TBL] [Abstract][Full Text] [Related]
8. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Pham AL; Lee C; Doyle FM; Sedlak DL Environ Sci Technol; 2009 Dec; 43(23):8930-5. PubMed ID: 19943668 [TBL] [Abstract][Full Text] [Related]
9. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst. Wang Y; Liang M; Fang J; Fu J; Chen X Chemosphere; 2017 Sep; 182():468-476. PubMed ID: 28521161 [TBL] [Abstract][Full Text] [Related]
10. Stability of dissolved percarbonate and its implications for groundwater remediation. Ma J; Xia X; Ma Y; Luo Y; Zhong Y Chemosphere; 2018 Aug; 205():41-44. PubMed ID: 29679787 [TBL] [Abstract][Full Text] [Related]
11. Comment on "Inhibitory effect of dissolved silica on H2O2 decomposition by iron(III) and manganese(IV) oxides: implications for H2O2-based in situ chemical oxidation". Hanna K Environ Sci Technol; 2012 Mar; 46(6):3591-2; author reply 3593-4. PubMed ID: 22329642 [No Abstract] [Full Text] [Related]
12. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism. Cheng Y; Zhang S; Huang T; Li Y Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121 [TBL] [Abstract][Full Text] [Related]
13. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Kwan WP; Voelker BM Environ Sci Technol; 2003 Mar; 37(6):1150-8. PubMed ID: 12680668 [TBL] [Abstract][Full Text] [Related]
14. Persulfate activation by subsurface minerals. Ahmad M; Teel AL; Watts RJ J Contam Hydrol; 2010 Jun; 115(1-4):34-45. PubMed ID: 20439128 [TBL] [Abstract][Full Text] [Related]
15. Hydrodynamic chronoamperometric method for the determination of H₂O₂ using MnO₂-based carbon paste electrodes in groundwater treated by Fenton and Fenton-like reagents for natural organic matter removal. Zbiljić J; Vajdle O; Guzsvány V; Molnar J; Agbaba J; Dalmacija B; Kalcher K J Hazard Mater; 2015; 283():292-301. PubMed ID: 25310597 [TBL] [Abstract][Full Text] [Related]
16. Degradation of 1,2-dichloroethane from wash water of ion-exchange resin using Fenton's oxidation. Vilve M; Vilhunen S; Vepsäläinen M; Kurniawan TA; Lehtonen N; Isomäki H; Sillanpää M Environ Sci Pollut Res Int; 2010 May; 17(4):875-84. PubMed ID: 20101466 [TBL] [Abstract][Full Text] [Related]
17. Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts. Rey A; Bahamonde A; Casas JA; Rodríguez JJ Water Sci Technol; 2010; 61(11):2769-78. PubMed ID: 20489249 [TBL] [Abstract][Full Text] [Related]
18. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol. Calleja G; Melero JA; Martínez F; Molina R Water Res; 2005 May; 39(9):1741-50. PubMed ID: 15899272 [TBL] [Abstract][Full Text] [Related]
19. Effect of ethylenediamine-N,N'-disuccinic acid on Fenton and photo-Fenton processes using goethite as an iron source: optimization of parameters for bisphenol A degradation. Huang W; Brigante M; Wu F; Hanna K; Mailhot G Environ Sci Pollut Res Int; 2013 Jan; 20(1):39-50. PubMed ID: 22733556 [TBL] [Abstract][Full Text] [Related]
20. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. Xue X; Hanna K; Deng N J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]