BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 23047261)

  • 21. Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis.
    Koka K; Holland NJ; Lupo JE; Jenkins HA; Tollin DJ
    Hear Res; 2010 May; 263(1-2):128-37. PubMed ID: 19720125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Compound Action Potential in Subjects Receiving a Cochlear Implant.
    Scott WC; Giardina CK; Pappa AK; Fontenot TE; Anderson ML; Dillon MT; Brown KD; Pillsbury HC; Adunka OF; Buchman CA; Fitzpatrick DC
    Otol Neurotol; 2016 Dec; 37(10):1654-1661. PubMed ID: 27749750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring of the Inner Ear Function During and After Cochlear Implant Insertion Using Electrocochleography.
    Haumann S; Imsiecke M; Bauernfeind G; Büchner A; Helmstaedter V; Lenarz T; Salcher RB
    Trends Hear; 2019; 23():2331216519833567. PubMed ID: 30909815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auditory nerve neurophonic recorded from the round window of the Mongolian gerbil.
    Henry KR
    Hear Res; 1995 Oct; 90(1-2):176-84. PubMed ID: 8974995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrocochleography in Cochlear Implant Recipients With Residual Hearing: Comparison With Audiometric Thresholds.
    Koka K; Saoji AA; Litvak LM
    Ear Hear; 2017; 38(3):e161-e167. PubMed ID: 27879487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extra- and Intracochlear Electrocochleography in Cochlear Implant Recipients.
    Dalbert A; Pfiffner F; Röösli C; Thoele K; Sim JH; Gerig R; Huber AM
    Audiol Neurootol; 2015; 20(5):339-48. PubMed ID: 26340649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrophysiological Evidence of the Basilar-Membrane Travelling Wave and Frequency Place Coding of Sound in Cochlear Implant Recipients.
    Campbell L; Bester C; Iseli C; Sly D; Dragovic A; Gummer AW; O'Leary S
    Audiol Neurootol; 2017; 22(3):180-189. PubMed ID: 29084395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intraoperative round window electrocochleography and speech perception outcomes in pediatric cochlear implant recipients.
    Formeister EJ; McClellan JH; Merwin WH; Iseli CE; Calloway NH; Teagle HF; Buchman CA; Adunka OF; Fitzpatrick DC
    Ear Hear; 2015; 36(2):249-60. PubMed ID: 25259669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of intracochlear damage during cochlear implant electrode insertion using extracochlear measurements in the gerbil.
    Ahmad FI; Choudhury B; De Mason CE; Adunka OF; Finley CC; Fitzpatrick DC
    Laryngoscope; 2012 Mar; 122(3):636-44. PubMed ID: 22252968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Pure-Tone Thresholds and Cochlear Microphonics Thresholds in Pediatric Cochlear Implant Patients.
    Coulthurst S; Nachman AJ; Murray MT; Koka K; Saoji AA
    Ear Hear; 2020; 41(5):1320-1326. PubMed ID: 32332587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracochlear Electrocochleography and Speech Perception Scores in Cochlear Implant Recipients.
    Valenzuela CV; Lichtenhan JT; Lefler SM; Koka K; Buchman CA; Ortmann AJ
    Laryngoscope; 2021 Oct; 131(10):E2681-E2688. PubMed ID: 34019310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations.
    Santarelli R; del Castillo I; Cama E; Scimemi P; Starr A
    Hear Res; 2015 Dec; 330(Pt B):200-12. PubMed ID: 26188103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Residual Hair Cell Responses in Electric-Acoustic Stimulation Cochlear Implant Users with Complete Loss of Acoustic Hearing After Implantation.
    Tejani VD; Kim JS; Oleson JJ; Abbas PJ; Brown CJ; Hansen MR; Gantz BJ
    J Assoc Res Otolaryngol; 2021 Apr; 22(2):161-176. PubMed ID: 33538936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Summating Potential Is a Reliable Marker of Electrode Position in Electrocochleography: Cochlear Implant as a Theragnostic Probe.
    Helmstaedter V; Lenarz T; Erfurt P; Kral A; Baumhoff P
    Ear Hear; 2018; 39(4):687-700. PubMed ID: 29251689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Are inner or outer hair cells the source of summating potentials recorded from the round window?
    Durrant JD; Wang J; Ding DL; Salvi RJ
    J Acoust Soc Am; 1998 Jul; 104(1):370-7. PubMed ID: 9670530
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):177-88. PubMed ID: 2737964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The origin of the 900 Hz spectral peak in spontaneous and sound-evoked round-window electrical activity.
    McMahon CM; Patuzzi RB
    Hear Res; 2002 Nov; 173(1-2):134-52. PubMed ID: 12372642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auditory nerve neurophonic tuning curves produced by masking of round window responses.
    Henry KR
    Hear Res; 1997 Feb; 104(1-2):167-76. PubMed ID: 9119760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of intraoperative round window electrocochleography for screening the patients with auditory neuropathy.
    Wang LE; Wang Z; Zhang DX; Cao KL
    Chin Med J (Engl); 2009 Apr; 122(8):941-4. PubMed ID: 19493419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.