BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23047597)

  • 1. The new nucleoporin: regulator of transcriptional repression and beyond.
    Sarma NJ; Willis K
    Nucleus; 2012; 3(6):508-15. PubMed ID: 23047597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nuclear pore complex mediates binding of the Mig1 repressor to target promoters.
    Sarma NJ; Buford TD; Haley T; Barbara-Haley K; Santangelo GM; Willis KA
    PLoS One; 2011; 6(11):e27117. PubMed ID: 22110603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connecting the transcription site to the nuclear pore: a multi-tether process that regulates gene expression.
    Dieppois G; Stutz F
    J Cell Sci; 2010 Jun; 123(Pt 12):1989-99. PubMed ID: 20519581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glucose-regulated nuclear localization of hexokinase 2 in Saccharomyces cerevisiae is Mig1-dependent.
    Ahuatzi D; Herrero P; de la Cera T; Moreno F
    J Biol Chem; 2004 Apr; 279(14):14440-6. PubMed ID: 14715653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pom33, a novel transmembrane nucleoporin required for proper nuclear pore complex distribution.
    Chadrin A; Hess B; San Roman M; Gatti X; Lombard B; Loew D; Barral Y; Palancade B; Doye V
    J Cell Biol; 2010 May; 189(5):795-811. PubMed ID: 20498018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nrg1 functions as a global transcriptional repressor of glucose-repressed genes through its direct binding to the specific promoter regions.
    Lee SB; Kang HS; Kim T
    Biochem Biophys Res Commun; 2013 Oct; 439(4):501-5. PubMed ID: 24025681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nup-PI: the nucleopore-promoter interaction of genes in yeast.
    Schmid M; Arib G; Laemmli C; Nishikawa J; Durussel T; Laemmli UK
    Mol Cell; 2006 Feb; 21(3):379-91. PubMed ID: 16455493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TORC1 inactivation stimulates autophagy of nucleoporin and nuclear pore complexes.
    Tomioka Y; Kotani T; Kirisako H; Oikawa Y; Kimura Y; Hirano H; Ohsumi Y; Nakatogawa H
    J Cell Biol; 2020 Jul; 219(7):. PubMed ID: 32453403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene positioning is regulated by phosphorylation of the nuclear pore complex by Cdk1.
    Brickner DG; Brickner JH
    Cell Cycle; 2011 Feb; 10(3):392-5. PubMed ID: 21228627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-translational assembly and localized translation of nucleoporins in nuclear pore complex biogenesis.
    Lautier O; Penzo A; Rouvière JO; Chevreux G; Collet L; Loïodice I; Taddei A; Devaux F; Collart MA; Palancade B
    Mol Cell; 2021 Jun; 81(11):2417-2427.e5. PubMed ID: 33838103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for DNA sequence in controlling the spatial organization of the genome.
    Ahmed S; Brickner JH
    Nucleus; 2010; 1(5):402-6. PubMed ID: 21326823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism.
    Sarma NJ; Haley TM; Barbara KE; Buford TD; Willis KA; Santangelo GM
    Genetics; 2007 Mar; 175(3):1127-35. PubMed ID: 17237508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Hog1 stress-activated protein kinase targets nucleoporins to control mRNA export upon stress.
    Regot S; de Nadal E; Rodríguez-Navarro S; González-Novo A; Pérez-Fernandez J; Gadal O; Seisenbacher G; Ammerer G; Posas F
    J Biol Chem; 2013 Jun; 288(24):17384-98. PubMed ID: 23645671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic Transcriptional Memory of
    Sood V; Cajigas I; D'Urso A; Light WH; Brickner JH
    Genetics; 2017 Aug; 206(4):1895-1907. PubMed ID: 28607146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of a DNA zip code with the nuclear pore complex promotes H2A.Z incorporation and INO1 transcriptional memory.
    Light WH; Brickner DG; Brand VR; Brickner JH
    Mol Cell; 2010 Oct; 40(1):112-25. PubMed ID: 20932479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nup100 regulates
    Lord CL; Ospovat O; Wente SR
    RNA; 2017 Mar; 23(3):365-377. PubMed ID: 27932586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexokinase 2 Is an Intracellular Glucose Sensor of Yeast Cells That Maintains the Structure and Activity of Mig1 Protein Repressor Complex.
    Vega M; Riera A; Fernández-Cid A; Herrero P; Moreno F
    J Biol Chem; 2016 Apr; 291(14):7267-85. PubMed ID: 26865637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint.
    Iouk T; Kerscher O; Scott RJ; Basrai MA; Wozniak RW
    J Cell Biol; 2002 Dec; 159(5):807-19. PubMed ID: 12473689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae.
    Lutfiyya LL; Iyer VR; DeRisi J; DeVit MJ; Brown PO; Johnston M
    Genetics; 1998 Dec; 150(4):1377-91. PubMed ID: 9832517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro characterization of the Mig1 repressor from Saccharomyces cerevisiae reveals evidence for monomeric and higher molecular weight forms.
    Needham PG; Trumbly RJ
    Yeast; 2006 Dec; 23(16):1151-66. PubMed ID: 17133623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.