BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23047707)

  • 1. Organization of myelin in the mouse somatosensory barrel cortex and the effects of sensory deprivation.
    Barrera K; Chu P; Abramowitz J; Steger R; Ramos RL; Brumberg JC
    Dev Neurobiol; 2013 Apr; 73(4):297-314. PubMed ID: 23047707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whisker trimming begun at birth or on postnatal day 12 affects excitatory and inhibitory receptive fields of layer IV barrel neurons.
    Shoykhet M; Land PW; Simons DJ
    J Neurophysiol; 2005 Dec; 94(6):3987-95. PubMed ID: 16093330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neonatal sensory deprivation and the development of cortical function: unilateral and bilateral sensory deprivation result in different functional outcomes.
    Popescu MV; Ebner FF
    J Neurophysiol; 2010 Jul; 104(1):98-107. PubMed ID: 20427621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex.
    Chen CC; Tam D; Brumberg JC
    Brain Struct Funct; 2012 Apr; 217(2):435-46. PubMed ID: 21861159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical period for experience-dependent synaptic plasticity in rat barrel cortex.
    Fox K
    J Neurosci; 1992 May; 12(5):1826-38. PubMed ID: 1578273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and sensory experience dependent regulation of microglia in barrel cortex.
    Kalambogias J; Chen CC; Khan S; Son T; Wercberger R; Headlam C; Lin C; Brumberg JC
    J Comp Neurol; 2020 Mar; 528(4):559-573. PubMed ID: 31502243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Length of myelin internodes of individual oligodendrocytes is controlled by microenvironment influenced by normal and input-deprived axonal activities in sensory deprived mouse models.
    Osanai Y; Shimizu T; Mori T; Hatanaka N; Kimori Y; Kobayashi K; Koyama S; Yoshimura Y; Nambu A; Ikenaka K
    Glia; 2018 Nov; 66(11):2514-2525. PubMed ID: 30240035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats.
    Glazewski S; Fox K
    J Neurophysiol; 1996 Apr; 75(4):1714-29. PubMed ID: 8727408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unilateral whisker trimming in newborn rats alters neuronal coincident discharge among mature barrel cortex neurons.
    Ghoshal A; Lustig B; Popescu M; Ebner F; Pouget P
    J Neurophysiol; 2014 Oct; 112(8):1925-35. PubMed ID: 25057142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of synaptic zinc level and zinc transporter 3 expression during postnatal development and after sensory deprivation in the barrel cortex of mice.
    Liguz-Lecznar M; Nowicka D; Czupryn A; Skangiel-Kramska J
    Brain Res Bull; 2005 Jul; 66(2):106-13. PubMed ID: 15982526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of sensory input increases the intrinsic excitability of layer 5 pyramidal neurons in rat barrel cortex.
    Breton JD; Stuart GJ
    J Physiol; 2009 Nov; 587(Pt 21):5107-19. PubMed ID: 19736297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experience-dependent alteration of synaptic zinc in rat somatosensory barrel cortex.
    Land PW; Akhtar ND
    Somatosens Mot Res; 1999; 16(2):139-50. PubMed ID: 10449062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ipsilateral whiskers suppress experience-dependent plasticity in the barrel cortex.
    Glazewski S; Benedetti BL; Barth AL
    J Neurosci; 2007 Apr; 27(14):3910-20. PubMed ID: 17409256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of chondroitin sulfate proteoglycans in barrel field of mouse and rat somatosensory cortex.
    Nakamura M; Nakano K; Morita S; Nakashima T; Oohira A; Miyata S
    Brain Res; 2009 Feb; 1252():117-29. PubMed ID: 19056358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential response of synaptic zinc levels to sensory deprivation in the barrel cortex of young and adult mice.
    Czupryn A; Skangiel-Kramska J
    Exp Brain Res; 2001 Dec; 141(4):567-72. PubMed ID: 11810150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience-dependent plasticity of rat barrel cortex: redistribution of activity across barrel-columns.
    Lebedev MA; Mirabella G; Erchova I; Diamond ME
    Cereb Cortex; 2000 Jan; 10(1):23-31. PubMed ID: 10639392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experience-dependent alteration of zinc-containing circuits in somatosensory cortex of the mouse.
    Quaye VL; Shamalla-Hannah L; Land PW
    Brain Res Dev Brain Res; 1999 May; 114(2):283-7. PubMed ID: 10320770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of vibrissa deprivation pattern on the form of plasticity induced in rat barrel cortex.
    Wallace H; Fox K
    Somatosens Mot Res; 1999; 16(2):122-38. PubMed ID: 10449061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional mapping of the primary somatosensory cortex upon sensory deprivation.
    Kole K; Komuro Y; Provaznik J; Pistolic J; Benes V; Tiesinga P; Celikel T
    Gigascience; 2017 Oct; 6(10):1-6. PubMed ID: 29020745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex.
    Hughes EG; Orthmann-Murphy JL; Langseth AJ; Bergles DE
    Nat Neurosci; 2018 May; 21(5):696-706. PubMed ID: 29556025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.