These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23047892)

  • 1. Feedback-controlled parallel point process filter for estimation of goal-directed movements from neural signals.
    Shanechi MM; Wornell GW; Williams ZM; Brown EN
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):129-40. PubMed ID: 23047892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric control mechanisms of bimanual coordination: an application of directed connectivity analysis to kinematic and functional MRI data.
    Maki Y; Wong KF; Sugiura M; Ozaki T; Sadato N
    Neuroimage; 2008 Oct; 42(4):1295-304. PubMed ID: 18674627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic trajectory decoding using motor cortical ensembles.
    Fagg AH; Ojakangas GW; Miller LE; Hatsopoulos NG
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):487-96. PubMed ID: 19666343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):468-77. PubMed ID: 22772374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural ensemble activity from multiple brain regions predicts kinematic and dynamic variables in a multiple force field reaching task.
    Francis JT; Chapin JK
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):172-4. PubMed ID: 16792286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of online visual feedback for the control of target-directed and allocentric hand movements.
    Thaler L; Goodale MA
    J Neurophysiol; 2011 Feb; 105(2):846-59. PubMed ID: 21160005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robustness of neuroprosthetic decoding algorithms.
    Serruya M; Hatsopoulos N; Fellows M; Paninski L; Donoghue J
    Biol Cybern; 2003 Mar; 88(3):219-28. PubMed ID: 12647229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring time-scales of closed-loop decoder adaptation in brain-machine interfaces.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5436-9. PubMed ID: 22255567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.
    Shanechi MM; Williams ZM; Wornell GW; Hu RC; Powers M; Brown EN
    PLoS One; 2013; 8(4):e59049. PubMed ID: 23593130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Offline decoding of end-point forces using neural ensembles: application to a brain-machine interface.
    Gupta R; Ashe J
    IEEE Trans Neural Syst Rehabil Eng; 2009 Jun; 17(3):254-62. PubMed ID: 19497832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpreting spatial and temporal neural activity through a recurrent neural network brain-machine interface.
    Sanchez JC; Erdogmus D; Nicolelis MA; Wessberg J; Principe JC
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):213-9. PubMed ID: 16003902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Your mind's hand: motor imagery of pointing movements with different accuracy.
    Lorey B; Pilgramm S; Walter B; Stark R; Munzert J; Zentgraf K
    Neuroimage; 2010 Feb; 49(4):3239-47. PubMed ID: 19948224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical encoding model for a primary motor cortical brain-machine interface.
    Shoham S; Paninski LM; Fellows MR; Hatsopoulos NG; Donoghue JP; Normann RA
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1312-22. PubMed ID: 16041995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the gamma band: the role of high-frequency features in movement classification.
    Miller KJ; Shenoy P; den Nijs M; Sorensen LB; Rao RN; Ojemann JG
    IEEE Trans Biomed Eng; 2008 May; 55(5):1634-7. PubMed ID: 18440909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural decoding using gyral and intrasulcal electrocorticograms.
    Yanagisawa T; Hirata M; Saitoh Y; Kato A; Shibuya D; Kamitani Y; Yoshimine T
    Neuroimage; 2009 May; 45(4):1099-106. PubMed ID: 19349227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic mechanisms in sensorimotor control.
    Körding KP; Wolpert DM
    Novartis Found Symp; 2006; 270():191-8; discussion 198-202, 232-7. PubMed ID: 16649715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance of cortico-cortical connections of the motor system with the observation of goal directed grasping movements.
    Koch G; Versace V; Bonnì S; Lupo F; Lo Gerfo E; Oliveri M; Caltagirone C
    Neuropsychologia; 2010 Oct; 48(12):3513-20. PubMed ID: 20691198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection and parameterization of cortical neurons for neuroprosthetic control.
    Wahnoun R; He J; Helms Tillery SI
    J Neural Eng; 2006 Jun; 3(2):162-71. PubMed ID: 16705272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A state-space framework for movement control to dynamic goals through brain-driven interfaces.
    Srinivasan L; Brown EN
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):526-35. PubMed ID: 17355066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.