These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23049488)

  • 61. Multi-core CPU or GPU-accelerated Multiscale Modeling for Biomolecular Complexes.
    Liao T; Zhang Y; Kekenes-Huskey PM; Cheng Y; Michailova A; McCulloch AD; Holst M; McCammon JA
    Mol Based Math Biol; 2013 Jul; 1():. PubMed ID: 24352481
    [TBL] [Abstract][Full Text] [Related]  

  • 62. CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment.
    Chen X; Wang C; Tang S; Yu C; Zou Q
    BMC Bioinformatics; 2017 Jun; 18(1):315. PubMed ID: 28646874
    [TBL] [Abstract][Full Text] [Related]  

  • 63. GPU accelerated biochemical network simulation.
    Zhou Y; Liepe J; Sheng X; Stumpf MP; Barnes C
    Bioinformatics; 2011 Mar; 27(6):874-6. PubMed ID: 21224286
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Accuracy and efficiency of graphics processing unit (GPU) based Acuros XB dose calculation within the Varian Eclipse treatment planning system.
    Aland T; Walsh A; Jones M; Piccini A; Devlin A
    Med Dosim; 2019 Autumn; 44(3):219-225. PubMed ID: 30153966
    [TBL] [Abstract][Full Text] [Related]  

  • 65. GPU-FS-kNN: a software tool for fast and scalable kNN computation using GPUs.
    Arefin AS; Riveros C; Berretta R; Moscato P
    PLoS One; 2012; 7(8):e44000. PubMed ID: 22937144
    [TBL] [Abstract][Full Text] [Related]  

  • 66. GPUTreeShap: massively parallel exact calculation of SHAP scores for tree ensembles.
    Mitchell R; Frank E; Holmes G
    PeerJ Comput Sci; 2022; 8():e880. PubMed ID: 35494875
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A novel CPU/GPU simulation environment for large-scale biologically realistic neural modeling.
    Hoang RV; Tanna D; Jayet Bray LC; Dascalu SM; Harris FC
    Front Neuroinform; 2013; 7():19. PubMed ID: 24106475
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dense GPU-enhanced surface reconstruction from stereo endoscopic images for intraoperative registration.
    Rohl S; Bodenstedt S; Suwelack S; Dillmann R; Speidel S; Kenngott H; Muller-Stich BP
    Med Phys; 2012 Mar; 39(3):1632-45. PubMed ID: 22380395
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fast MPEG-CDVS Encoder With GPU-CPU Hybrid Computing.
    Duan LY; Sun W; Zhang X; Wang S; Chen J; Yin J; See S; Huang T; Kot AC; Gao W
    IEEE Trans Image Process; 2018 May; 27(5):2201-2216. PubMed ID: 29432101
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit.
    Badal A; Badano A
    Med Phys; 2009 Nov; 36(11):4878-80. PubMed ID: 19994495
    [TBL] [Abstract][Full Text] [Related]  

  • 71. PARALLELPROJ-an open-source framework for fast calculation of projections in tomography.
    Schramm G; Thielemans K
    Front Nucl Med; 2023; 3():1324562. PubMed ID: 39355030
    [TBL] [Abstract][Full Text] [Related]  

  • 72. LASSIE: simulating large-scale models of biochemical systems on GPUs.
    Tangherloni A; Nobile MS; Besozzi D; Mauri G; Cazzaniga P
    BMC Bioinformatics; 2017 May; 18(1):246. PubMed ID: 28486952
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Performance-optimized clinical IMRT planning on modern CPUs.
    Ziegenhein P; Kamerling CP; Bangert M; Kunkel J; Oelfke U
    Phys Med Biol; 2013 Jun; 58(11):3705-15. PubMed ID: 23656861
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.
    Kutzner C; Páll S; Fechner M; Esztermann A; de Groot BL; Grubmüller H
    J Comput Chem; 2015 Oct; 36(26):1990-2008. PubMed ID: 26238484
    [TBL] [Abstract][Full Text] [Related]  

  • 75. TOD-Tree: Task-Overlapped Direct Send Tree Image Compositing for Hybrid MPI Parallelism and GPUs.
    Grosset AVP; Prasad M; Christensen C; Knoll A; Hansen C
    IEEE Trans Vis Comput Graph; 2017 Jun; 23(6):1677-1690. PubMed ID: 26992102
    [TBL] [Abstract][Full Text] [Related]  

  • 76. SIML: a fast SIMD algorithm for calculating LINGO chemical similarities on GPUs and CPUs.
    Haque IS; Pande VS; Walters WP
    J Chem Inf Model; 2010 Apr; 50(4):560-4. PubMed ID: 20218693
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A convolution-superposition dose calculation engine for GPUs.
    Hissoiny S; Ozell B; Després P
    Med Phys; 2010 Mar; 37(3):1029-37. PubMed ID: 20384238
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparing performance of many-core CPUs and GPUs for static and motion compensated reconstruction of C-arm CT data.
    Hofmann HG; Keck B; Rohkohl C; Hornegger J
    Med Phys; 2011 Jan; 38(1):468-73. PubMed ID: 21361215
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ultrafast convolution/superposition using tabulated and exponential kernels on GPU.
    Chen Q; Chen M; Lu W
    Med Phys; 2011 Mar; 38(3):1150-61. PubMed ID: 21520827
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Parallel Generalized Born Implicit Solvent Calculations with NAMD.
    Tanner DE; Chan KY; Phillips JC; Schulten K
    J Chem Theory Comput; 2011 Nov; 7(11):3635-3642. PubMed ID: 22121340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.