These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23049488)

  • 81. Fast computation of myelin maps from MRI T₂ relaxation data using multicore CPU and graphics card parallelization.
    Yoo Y; Prasloski T; Vavasour I; MacKay A; Traboulsee AL; Li DK; Tam RC
    J Magn Reson Imaging; 2015 Mar; 41(3):700-7. PubMed ID: 24578324
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Efficient Join Algorithms For Large Database Tables in a Multi-GPU Environment.
    Rui R; Li H; Tu YC
    Proceedings VLDB Endowment; 2020 Dec; 14(4):708-720. PubMed ID: 38260211
    [TBL] [Abstract][Full Text] [Related]  

  • 83. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores.
    Chikkagoudar S; Wang K; Li M
    BMC Res Notes; 2011 May; 4():158. PubMed ID: 21615923
    [TBL] [Abstract][Full Text] [Related]  

  • 84. ARCHERRT - a GPU-based and photon-electron coupled Monte Carlo dose computing engine for radiation therapy: software development and application to helical tomotherapy.
    Su L; Yang Y; Bednarz B; Sterpin E; Du X; Liu T; Ji W; Xu XG
    Med Phys; 2014 Jul; 41(7):071709. PubMed ID: 24989378
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Efficient estimation of bounded gradient-drift diffusion models for affect on CPU and GPU.
    Loossens T; Meers K; Vanhasbroeck N; Anarat N; Verdonck S; Tuerlinckx F
    Behav Res Methods; 2022 Jun; 54(3):1428-1443. PubMed ID: 34561819
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Scrooge: a fast and memory-frugal genomic sequence aligner for CPUs, GPUs, and ASICs.
    Lindegger J; Senol Cali D; Alser M; Gómez-Luna J; Ghiasi NM; Mutlu O
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 36961334
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Real-world comparison of CPU and GPU implementations of SNPrank: a network analysis tool for GWAS.
    Davis NA; Pandey A; McKinney BA
    Bioinformatics; 2011 Jan; 27(2):284-5. PubMed ID: 21115438
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Computing 2D constrained delaunay triangulation using the GPU.
    Qi M; Cao TT; Tan TS
    IEEE Trans Vis Comput Graph; 2013 May; 19(5):736-48. PubMed ID: 23492377
    [TBL] [Abstract][Full Text] [Related]  

  • 89. GPU based Position Based Dynamics for Surgical Simulators.
    Demirel D; Smith J; Kockara S; Halic T
    HCI Games I (2023); 2023 Jul; 14046():81-88. PubMed ID: 37961068
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Accelerating Pythonic Coupled-Cluster Implementations: A Comparison Between CPUs and GPUs.
    Kriebel MH; Tecmer P; Gałyńska M; Leszczyk A; Boguslawski K
    J Chem Theory Comput; 2024 Feb; 20(3):1130-1142. PubMed ID: 38306601
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Screening methods for linear-scaling short-range hybrid calculations on CPU and GPU architectures.
    Beuerle M; Kussmann J; Ochsenfeld C
    J Chem Phys; 2017 Apr; 146(14):144108. PubMed ID: 28411611
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Inference of dynamic spatial GRN models with multi-GPU evolutionary computation.
    Mousavi R; Konuru SH; Lobo D
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834216
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Accelerating Density Functional Calculations with Graphics Processing Unit.
    Yasuda K
    J Chem Theory Comput; 2008 Aug; 4(8):1230-6. PubMed ID: 26631699
    [TBL] [Abstract][Full Text] [Related]  

  • 94. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations.
    Maia JD; Urquiza Carvalho GA; Mangueira CP; Santana SR; Cabral LA; Rocha GB
    J Chem Theory Comput; 2012 Sep; 8(9):3072-81. PubMed ID: 26605718
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A GPU implementation of a track-repeating algorithm for proton radiotherapy dose calculations.
    Yepes PP; Mirkovic D; Taddei PJ
    Phys Med Biol; 2010 Dec; 55(23):7107-20. PubMed ID: 21076192
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Ultra-fast digital tomosynthesis reconstruction using general-purpose GPU programming for image-guided radiation therapy.
    Park JC; Park SH; Kim JS; Han Y; Cho MK; Kim HK; Liu Z; Jiang SB; Song B; Song WY
    Technol Cancer Res Treat; 2011 Aug; 10(4):295-306. PubMed ID: 21728386
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Dynamic parallelism for synaptic updating in GPU-accelerated spiking neural network simulations.
    Kasap B; van Opstal AJ
    Neurocomputing (Amst); 2018 May; 302():55-65. PubMed ID: 30245550
    [TBL] [Abstract][Full Text] [Related]  

  • 98. GPU Acceleration of Large-Scale Full-Frequency GW Calculations.
    Yu VW; Govoni M
    J Chem Theory Comput; 2022 Aug; 18(8):4690-4707. PubMed ID: 35913080
    [TBL] [Abstract][Full Text] [Related]  

  • 99. GPU-accelerated molecular modeling coming of age.
    Stone JE; Hardy DJ; Ufimtsev IS; Schulten K
    J Mol Graph Model; 2010 Sep; 29(2):116-25. PubMed ID: 20675161
    [TBL] [Abstract][Full Text] [Related]  

  • 100. On developing B-spline registration algorithms for multi-core processors.
    Shackleford JA; Kandasamy N; Sharp GC
    Phys Med Biol; 2010 Nov; 55(21):6329-51. PubMed ID: 20938071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.