BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 230496)

  • 1. Chronic treatment with lithium or desipramine alters discharge frequency and norepinephrine responsiveness of cerebellar Purkinje cells.
    Siggins GR; Schultz JE
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5987-91. PubMed ID: 230496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of norepinephrine- and benzodiazepine-induced augmentation of Purkinje cell responses to gamma-aminobutyric acid (GABA).
    Waterhouse BD; Moises HC; Yeh HH; Geller HM; Woodward DJ
    J Pharmacol Exp Ther; 1984 Feb; 228(2):257-67. PubMed ID: 6319673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of long-term desipramine administration on noradrenergic neurotransmission: electrophysiological studies in the rat brain.
    Lacroix D; Blier P; Curet O; de Montigny C
    J Pharmacol Exp Ther; 1991 Jun; 257(3):1081-90. PubMed ID: 1646320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic methamphetamine exposure decreases high affinity uptake function in norepinephrine afferents in the cerebellar cortex: an electrophysiological and electrochemical study.
    Wang Y; Chou J; Jeng CH; Morales M; Wang JY
    Neuropharmacology; 2000 Aug; 39(11):2112-23. PubMed ID: 10963754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in beta adrenergic physiological response characteristics after long-term treatment with desmethylimipramine: interaction between norepinephrine and gamma-aminobutyric acid in rat cerebellum.
    Yeh HH; Woodward DJ
    J Pharmacol Exp Ther; 1983 Jul; 226(1):126-34. PubMed ID: 6306219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iontophoresis of Li+ antagonizes noradrenergic synaptic inhibition of rat cerebellar Purkinje cells.
    Siggins GR; Henriksen SJ; Bloom F
    Proc Natl Acad Sci U S A; 1979 Jun; 76(6):3015-8. PubMed ID: 288083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locus coeruleus stimulation potentiates Purkinje cell responses to afferent input: the climbing fiber system.
    Moises HC; Waterhouse BD; Woodward DJ
    Brain Res; 1981 Oct; 222(1):43-64. PubMed ID: 7296272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desipramine and noradrenergic neurotransmission in aging: failure to respond in aged laboratory animals.
    Bickford-Wimer PC; Parfitt K; Hoffer BJ; Freedman R
    Neuropharmacology; 1987 Jun; 26(6):597-605. PubMed ID: 3037423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of desipramine on basal and naloxone-stimulated cortisol secretion in humans: interaction of two drugs acting on noradrenergic control of adrenocorticotropin secretion.
    Torpy DJ; Grice JE; Hockings GI; Crosbie GV; Walters MM; Jackson RV
    J Clin Endocrinol Metab; 1995 Mar; 80(3):802-6. PubMed ID: 7883833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically-evoked release of norepinephrine in the rat cerebellum: an in vivo electrochemical and electrophysiological study.
    Bickford-Wimer P; Pang K; Rose GM; Gerhardt GA
    Brain Res; 1991 Sep; 558(2):305-11. PubMed ID: 1782547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of a potential antidepressant, 2,4-dimethyl-5-(3-fluorophenyl)-3H-1,2,4-triazole-3-thione, in an electrophysiological model responsive to desipramine.
    Sorensen SM; Zwolshen JM; Kane JM
    Neuropharmacology; 1990 Jun; 29(6):555-60. PubMed ID: 2385327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locus coeruleus stimulation potentiates local inhibitory processes in rat cerebellum.
    Moises HC; Waterhouse BD; Woodward DJ
    Brain Res Bull; 1983 Jun; 10(6):795-804. PubMed ID: 6616270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentiation of GABA inhibitory action in cerebrllum by locus coeruleus stimulation.
    Moises HC; Woodward DJ
    Brain Res; 1980 Jan; 182(2):327-44. PubMed ID: 7357389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiology of Purkinje neurons in the weaver mouse: iontophoresis of neurotransmitters and cyclic nucleotides, and stimulation of the nucleus locus coeruleus.
    Siggins GR; Henriksen SJ; Landis SC
    Brain Res; 1976 Sep; 114(1):53-69. PubMed ID: 183862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological correlates of presynaptic opiate receptor activation: reduction in norepinephrine-mediated inhibition from the locus coeruleus.
    Moises HC
    Brain Res; 1987 Oct; 423(1-2):149-61. PubMed ID: 2823983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chronic desipramine treatment on rat brain noradrenergic responses to alpha-adrenergic drugs.
    McMillen BA; Warnack W; German DC; Shore PA
    Eur J Pharmacol; 1980 Feb; 61(3):239-46. PubMed ID: 6102522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cerebellar norepinephrine system: inhibition, modulation, and gating.
    Woodward DJ; Moises HC; Waterhouse BD; Yeh HH; Cheun JE
    Prog Brain Res; 1991; 88():331-41. PubMed ID: 1687621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible relationship of the locus coeruleus--hippocampal noradrenergic neurons to depression and mode of action of antidepressant drugs.
    Kostowski W
    Pol J Pharmacol Pharm; 1985; 37(6):727-43. PubMed ID: 3008134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological evidence for presynaptic actions of phencyclidine on noradrenergic transmission in rat cerebellum.
    Marwaha J; Palmer MR; Woodward DJ; Hoffer BJ; Freedman R
    J Pharmacol Exp Ther; 1980 Dec; 215(3):606-13. PubMed ID: 6255134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noradrenergic facilitation of shock-probe defensive burying in lateral septum of rats, and modulation by chronic treatment with desipramine.
    Bondi CO; Barrera G; Lapiz MD; Bedard T; Mahan A; Morilak DA
    Prog Neuropsychopharmacol Biol Psychiatry; 2007 Mar; 31(2):482-95. PubMed ID: 17188790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.