BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23049775)

  • 21. Properties of Azotobacter vinelandii rhodanese.
    Pagani S; Sessa G; Sessa F; Colnaghi R
    Biochem Mol Biol Int; 1993 Mar; 29(4):595-604. PubMed ID: 8490572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of chronic sub-lethal oxidative stress on biofilm formation by Azotobacter vinelandii.
    Villa F; Remelli W; Forlani F; Gambino M; Landini P; Cappitelli F
    Biofouling; 2012; 28(8):823-33. PubMed ID: 22871137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and expression of the gene for a protein disulfide oxidoreductase from Azotobacter vinelandii: complementation of an Escherichia coli dsbA mutant strain.
    Ng TC; Kwik JF; Maier RJ
    Gene; 1997 Mar; 188(1):109-13. PubMed ID: 9099867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-directed mutagenesis of the dihydrolipoyl transacetylase component (E2p) of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Binding of the peripheral components E1p and E3.
    Schulze E; Westphal AH; Boumans H; de Kok A
    Eur J Biochem; 1991 Dec; 202(3):841-8. PubMed ID: 1765097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An unusual tandem-domain rhodanese harbouring two active sites identified in Desulfitobacterium hafniense.
    Prat L; Maillard J; Rohrbach-Brandt E; Holliger C
    FEBS J; 2012 Aug; 279(15):2754-67. PubMed ID: 22686689
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast conformational exchange between the sulfur-free and persulfide-bound rhodanese domain of E. coli YgaP.
    Wang W; Zhou P; He Y; Yu L; Xiong Y; Tian C; Wu F
    Biochem Biophys Res Commun; 2014 Sep; 452(3):817-21. PubMed ID: 25204500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutagenesis studies of the FeSII protein of Azotobacter vinelandii: roles of histidine and lysine residues in the protection of nitrogenase from oxygen damage.
    Lou J; Moshiri F; Johnson MK; Lafferty ME; Sorkin DL; Miller A; Maier RJ
    Biochemistry; 1999 Apr; 38(17):5563-71. PubMed ID: 10220344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cys92, Cys101, Cys197, and Cys203 are crucial residues for coordinating the iron-sulfur cluster of RhdA from Acidithiobacillus ferrooxidans.
    Dai Y; Liu J; Zheng C; Wu A; Zeng J; Qiu G
    Curr Microbiol; 2009 Nov; 59(5):559-64. PubMed ID: 19727950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and cellular localization of wild type and mutated dihydrolipoyltransacetylases from Azotobacter vinelandii and Escherichia coli expressed in E. coli.
    Schulze E; Westphal AH; Veenhuis M; de Kok A
    Biochim Biophys Acta; 1992 Mar; 1120(1):87-96. PubMed ID: 1554745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics and specificity of reductive acylation of wild-type and mutated lipoyl domains of 2-oxo-acid dehydrogenase complexes from Azotobacter vinelandii.
    Berg A; Westphal AH; Bosma HJ; de Kok A
    Eur J Biochem; 1998 Feb; 252(1):45-50. PubMed ID: 9523710
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyruvate dehydrogenase from Azotobacter vinelandii. Properties of the N-terminally truncated enzyme.
    Hengeveld AF; Schoustra SE; Westphal AH; de Kok A
    Eur J Biochem; 1999 Nov; 265(3):1098-107. PubMed ID: 10518807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural rearrangements of the two domains of Azotobacter vinelandii rhodanese upon sulfane sulfur release: essential molecular dynamics, 15N NMR relaxation and deuterium exchange on the uniformly labeled protein.
    Cicero DO; Melino S; Orsale M; Brancato G; Amadei A; Forlani F; Pagani S; Paci M
    Int J Biol Macromol; 2003 Dec; 33(4-5):193-201. PubMed ID: 14607364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties of the Escherichia coli rhodanese-like protein SseA: contribution of the active-site residue Ser240 to sulfur donor recognition.
    Colnaghi R; Cassinelli G; Drummond M; Forlani F; Pagani S
    FEBS Lett; 2001 Jul; 500(3):153-6. PubMed ID: 11445076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Escherichia coli GlpE is a prototype sulfurtransferase for the single-domain rhodanese homology superfamily.
    Spallarossa A; Donahue JL; Larson TJ; Bolognesi M; Bordo D
    Structure; 2001 Nov; 9(11):1117-25. PubMed ID: 11709175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii.
    Zheng L; Cash VL; Flint DH; Dean DR
    J Biol Chem; 1998 May; 273(21):13264-72. PubMed ID: 9582371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new Azotobacter vinelandii mannuronan C-5-epimerase gene (algG) is part of an alg gene cluster physically organized in a manner similar to that in Pseudomonas aeruginosa.
    Rehm BH; Ertesvåg H; Valla S
    J Bacteriol; 1996 Oct; 178(20):5884-9. PubMed ID: 8830682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface changes and role of buried water molecules during the sulfane sulfur transfer in rhodanese from Azotobacter vinelandii: a fluorescence quenching and nuclear magnetic relaxation dispersion spectroscopic study.
    Fasano M; Orsale M; Melino S; Nicolai E; Forlani F; Rosato N; Cicero D; Pagani S; Paci M
    Biochemistry; 2003 Jul; 42(28):8550-7. PubMed ID: 12859202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diazotrophic Growth Allows Azotobacter vinelandii To Overcome the Deleterious Effects of a
    Mus F; Tseng A; Dixon R; Peters JW
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28432097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: possible role of a protein perselenide in a selenium delivery system.
    Ogasawara Y; Lacourciere G; Stadtman TC
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9494-8. PubMed ID: 11493708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-chemical proton-dependent steps prior to O2-activation limit Azotobacter vinelandii 3-mercaptopropionic acid dioxygenase (MDO) catalysis.
    Crowell JK; Sardar S; Hossain MS; Foss FW; Pierce BS
    Arch Biochem Biophys; 2016 Aug; 604():86-94. PubMed ID: 27311613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.