These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 23049964)
1. Porcine tissue-specific regulatory networks derived from meta-analysis of the transcriptome. Pérez-Montarelo D; Hudson NJ; Fernández AI; Ramayo-Caldas Y; Dalrymple BP; Reverter A PLoS One; 2012; 7(9):e46159. PubMed ID: 23049964 [TBL] [Abstract][Full Text] [Related]
2. From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine. Ramayo-Caldas Y; Ballester M; Fortes MR; Esteve-Codina A; Castelló A; Noguera JL; Fernández AI; Pérez-Enciso M; Reverter A; Folch JM BMC Genomics; 2014 Mar; 15():232. PubMed ID: 24666776 [TBL] [Abstract][Full Text] [Related]
3. De novo transcriptome assembly for the lobster Homarus americanus and characterization of differential gene expression across nervous system tissues. McGrath LL; Vollmer SV; Kaluziak ST; Ayers J BMC Genomics; 2016 Jan; 17():63. PubMed ID: 26772543 [TBL] [Abstract][Full Text] [Related]
4. Identification of candidate regulatory genes for intramuscular fatty acid composition in pigs by transcriptome analysis. Valdés-Hernández J; Folch JM; Crespo-Piazuelo D; Passols M; Sebastià C; Criado-Mesas L; Castelló A; Sánchez A; Ramayo-Caldas Y Genet Sel Evol; 2024 Feb; 56(1):12. PubMed ID: 38347496 [TBL] [Abstract][Full Text] [Related]
5. Systems biology approach identifies key regulators and the interplay between miRNAs and transcription factors for pathological cardiac hypertrophy. Recamonde-Mendoza M; Werhli AV; Biolo A Gene; 2019 May; 698():157-169. PubMed ID: 30844478 [TBL] [Abstract][Full Text] [Related]
6. Transcription factor redundancy and tissue-specific regulation: evidence from functional and physical network connectivity. Kuntz SG; Williams BA; Sternberg PW; Wold BJ Genome Res; 2012 Oct; 22(10):1907-19. PubMed ID: 22730465 [TBL] [Abstract][Full Text] [Related]
7. Construction and verification of the transcriptional regulatory response network of Streptococcus mutans upon treatment with the biofilm inhibitor carolacton. Sudhakar P; Reck M; Wang W; He FQ; Wagner-Döbler I; Zeng AP BMC Genomics; 2014 May; 15():362. PubMed ID: 24884510 [TBL] [Abstract][Full Text] [Related]
8. Dynamic transcriptome profiles of skeletal muscle tissue across 11 developmental stages for both Tongcheng and Yorkshire pigs. Zhao Y; Li J; Liu H; Xi Y; Xue M; Liu W; Zhuang Z; Lei M BMC Genomics; 2015 May; 16(1):377. PubMed ID: 25962502 [TBL] [Abstract][Full Text] [Related]
9. MINI-EX: Integrative inference of single-cell gene regulatory networks in plants. Ferrari C; Manosalva Pérez N; Vandepoele K Mol Plant; 2022 Nov; 15(11):1807-1824. PubMed ID: 36307979 [TBL] [Abstract][Full Text] [Related]
10. Reconstructing directed gene regulatory network by only gene expression data. Zhang L; Feng XK; Ng YK; Li SC BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):430. PubMed ID: 27556418 [TBL] [Abstract][Full Text] [Related]
11. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks. Marbach D; Roy S; Ay F; Meyer PE; Candeias R; Kahveci T; Bristow CA; Kellis M Genome Res; 2012 Jul; 22(7):1334-49. PubMed ID: 22456606 [TBL] [Abstract][Full Text] [Related]
12. ChlamyNET: a Chlamydomonas gene co-expression network reveals global properties of the transcriptome and the early setup of key co-expression patterns in the green lineage. Romero-Campero FJ; Perez-Hurtado I; Lucas-Reina E; Romero JM; Valverde F BMC Genomics; 2016 Mar; 17():227. PubMed ID: 26968660 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Spatio-Temporal Transcriptome Profiles of Soybean ( Sun S; Yi C; Ma J; Wang S; Peirats-Llobet M; Lewsey MG; Whelan J; Shou H Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066688 [TBL] [Abstract][Full Text] [Related]
14. Co-regulation of microRNAs and transcription factors in cardiomyocyte specific differentiation of murine embryonic stem cells: An aspect from transcriptome analysis. Gan L; Denecke B Biochim Biophys Acta Gene Regul Mech; 2017 Sep; 1860(9):983-1001. PubMed ID: 28782694 [TBL] [Abstract][Full Text] [Related]
16. TF-centered downstream gene set enrichment analysis: Inference of causal regulators by integrating TF-DNA interactions and protein post-translational modifications information. Liu Q; Tan Y; Huang T; Ding G; Tu Z; Liu L; Li Y; Dai H; Xie L BMC Bioinformatics; 2010 Dec; 11 Suppl 11(Suppl 11):S5. PubMed ID: 21172055 [TBL] [Abstract][Full Text] [Related]
17. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network. Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128 [TBL] [Abstract][Full Text] [Related]
18. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data. Panchy NL; Lloyd JP; Shiu SH BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475 [TBL] [Abstract][Full Text] [Related]
19. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs. Gondret F; Vincent A; Houée-Bigot M; Siegel A; Lagarrigue S; Causeur D; Gilbert H; Louveau I BMC Genomics; 2017 Mar; 18(1):244. PubMed ID: 28327084 [TBL] [Abstract][Full Text] [Related]
20. Gene co-expression network analysis provides novel insights into myostatin regulation at three different mouse developmental timepoints. Yang X; Koltes JE; Park CA; Chen D; Reecy JM PLoS One; 2015; 10(2):e0117607. PubMed ID: 25695797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]