BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23050229)

  • 1. Multiple pathways regulate minisatellite stability during stationary phase in yeast.
    Kelly MK; Brosnan L; Jauert PA; Dunham MJ; Kirkpatrick DT
    G3 (Bethesda); 2012 Oct; 2(10):1185-95. PubMed ID: 23050229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minisatellite alterations in ZRT1 mutants occur via RAD52-dependent and RAD52-independent mechanisms in quiescent stationary phase yeast cells.
    Kelly MK; Alver B; Kirkpatrick DT
    DNA Repair (Amst); 2011 Jun; 10(6):556-66. PubMed ID: 21515092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc regulates the stability of repetitive minisatellite DNA tracts during stationary phase.
    Kelly MK; Jauert PA; Jensen LE; Chan CL; Truong CS; Kirkpatrick DT
    Genetics; 2007 Dec; 177(4):2469-79. PubMed ID: 18073441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of CSM3, MRC1, and TOF1 in minisatellite stability and large loop DNA repair during meiosis in yeast.
    LeClere AR; Yang JK; Kirkpatrick DT
    Fungal Genet Biol; 2013 Jan; 50():33-43. PubMed ID: 23165348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Whole Genome Screen for Minisatellite Stability Genes in Stationary-Phase Yeast Cells.
    Alver B; Jauert PA; Brosnan L; O'Hehir M; VanderSluis B; Myers CL; Kirkpatrick DT
    G3 (Bethesda); 2013 Apr; 3(4):741-756. PubMed ID: 23550123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel checkpoint pathway organization promotes genome stability in stationary-phase yeast cells.
    Alver B; Kelly MK; Kirkpatrick DT
    Mol Cell Biol; 2013 Jan; 33(2):457-72. PubMed ID: 23149941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAD1 controls the meiotic expansion of the human HRAS1 minisatellite in Saccharomyces cerevisiae.
    Jauert PA; Edmiston SN; Conway K; Kirkpatrick DT
    Mol Cell Biol; 2002 Feb; 22(3):953-64. PubMed ID: 11784870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Length and sequence heterozygosity differentially affect HRAS1 minisatellite stability during meiosis in yeast.
    Jauert PA; Kirkpatrick DT
    Genetics; 2005 Jun; 170(2):601-12. PubMed ID: 15834153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of human minisatellite mutation in yeast.
    Cederberg H; Rannug U
    Mutat Res; 2006 Jun; 598(1-2):132-43. PubMed ID: 16581091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t).
    Kokoska RJ; Stefanovic L; Tran HT; Resnick MA; Gordenin DA; Petes TD
    Mol Cell Biol; 1998 May; 18(5):2779-88. PubMed ID: 9566897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human minisatellites MS1, MS32, MS205 and CEB1 integrated into the yeast genome exhibit different degrees of mitotic instability but are all stabilised by RAD27.
    Maleki S; Cederberg H; Rannug U
    Curr Genet; 2002 Aug; 41(5):333-41. PubMed ID: 12185499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Instability of the human minisatellite CEB1 in rad27Delta and dna2-1 replication-deficient yeast cells.
    Lopes J; Debrauwère H; Buard J; Nicolas A
    EMBO J; 2002 Jun; 21(12):3201-11. PubMed ID: 12065432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex minisatellite rearrangements generated in the total or partial absence of Rad27/hFEN1 activity occur in a single generation and are Rad51 and Rad52 dependent.
    Lopes J; Ribeyre C; Nicolas A
    Mol Cell Biol; 2006 Sep; 26(17):6675-89. PubMed ID: 16914748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly in plant Zn uptake and homeostasis.
    Milner MJ; Pence NS; Liu J; Kochian LV
    J Integr Plant Biol; 2014 Mar; 56(3):271-80. PubMed ID: 24433538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of sequence divergence between alleles of the human MS205 minisatellite incorporated into the yeast genome on length-mutation rates and lethal recombination events during meiosis.
    He Q; Cederberg H; Rannug U
    J Mol Biol; 2002 May; 319(2):315-27. PubMed ID: 12051909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Dun1 in response to nuclear DNA instability accounts for the increase in mitochondrial point mutations in Rad27/FEN1 deficient S. cerevisiae.
    Kaniak-Golik A; Kuberska R; Dzierzbicki P; Sledziewska-Gojska E
    PLoS One; 2017; 12(7):e0180153. PubMed ID: 28678842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of rad27 mutations that confer differential defects in mutation avoidance, repeat tract instability, and flap cleavage.
    Xie Y; Liu Y; Argueso JL; Henricksen LA; Kao HI; Bambara RA; Alani E
    Mol Cell Biol; 2001 Aug; 21(15):4889-99. PubMed ID: 11438646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of gross chromosomal rearrangements by the human CEB1 and CEB25 minisatellites in Saccharomyces cerevisiae depends on G-quadruplexes or Cdc13.
    Piazza A; Serero A; Boulé JB; Legoix-Né P; Lopes J; Nicolas A
    PLoS Genet; 2012; 8(11):e1003033. PubMed ID: 23133402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae.
    Choi JE; Heo SH; Kim MJ; Chung WH
    Free Radic Biol Med; 2018 Dec; 129():97-106. PubMed ID: 30223018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae.
    Yi DG; Kim MJ; Choi JE; Lee J; Jung J; Huh WK; Chung WH
    Free Radic Biol Med; 2016 Dec; 101():424-433. PubMed ID: 27838435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.