BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23050229)

  • 21. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae.
    Yi DG; Kim MJ; Choi JE; Lee J; Jung J; Huh WK; Chung WH
    Free Radic Biol Med; 2016 Dec; 101():424-433. PubMed ID: 27838435
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tetrad analysis shows that gene conversion is the major mechanism involved in mutation at the human minisatellite MS1 integrated in Saccharomyces cerevisiae.
    Berg I; Cederberg H; Rannug U
    Genet Res; 2000 Feb; 75(1):1-12. PubMed ID: 10740916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutations at the human minisatellite MS32 integrated in yeast occur with high frequency in meiosis and involve complex recombination events.
    Appelgren H; Cederberg H; Rannug U
    Mol Gen Genet; 1997 Sep; 256(1):7-17. PubMed ID: 9341674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HRAS1 rare minisatellite alleles and breast cancer in Australian women under age forty years.
    Firgaira FA; Seshadri R; McEvoy CR; Dite GS; Giles GG; McCredie MR; Southey MC; Venter DJ; Hopper JL
    J Natl Cancer Inst; 1999 Dec; 91(24):2107-11. PubMed ID: 10601382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo.
    Ribeyre C; Lopes J; Boulé JB; Piazza A; Guédin A; Zakian VA; Mergny JL; Nicolas A
    PLoS Genet; 2009 May; 5(5):e1000475. PubMed ID: 19424434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Induction of Hsp104 synthesis in Saccharomyces cerevisiae is inhibited by the petite mutation in the stationary growth phase].
    Fedoseeva IV; Rikhanov EG; Varakina NN; Rusaleva TM; Pyatrikas DV; Stepanov AV; Fedyaeva AV
    Genetika; 2014 Mar; 50(3):273-81. PubMed ID: 25438547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.
    Dzierzbicki P; Kaniak-Golik A; Malc E; Mieczkowski P; Ciesla Z
    Mutat Res; 2012 Dec; 740(1-2):21-33. PubMed ID: 23276591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability.
    Greene AL; Snipe JR; Gordenin DA; Resnick MA
    Hum Mol Genet; 1999 Nov; 8(12):2263-73. PubMed ID: 10545607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Meiotic interallelic conversion at the human minisatellite MS32 in yeast triggers recombination in several chromatids.
    Appelgren H; Cederberg H; Rannug U
    Gene; 1999 Oct; 239(1):29-38. PubMed ID: 10571031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses.
    Park JI; Grant CM; Dawes IW
    Biochem Biophys Res Commun; 2005 Feb; 327(1):311-9. PubMed ID: 15629464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Minisatellite variant repeat (MVR) analysis of the HRAS1 minisatellite locus.
    Vega A; Barros F; Bellas S; Carracedo A
    Electrophoresis; 1998 Dec; 19(18):3084-9. PubMed ID: 9932798
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae.
    Piazza A; Boulé JB; Lopes J; Mingo K; Largy E; Teulade-Fichou MP; Nicolas A
    Nucleic Acids Res; 2010 Jul; 38(13):4337-48. PubMed ID: 20223771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mutation of the yeast gene encoding PCNA destabilizes both microsatellite and minisatellite DNA sequences.
    Kokoska RJ; Stefanovic L; Buermeyer AB; Liskay RM; Petes TD
    Genetics; 1999 Feb; 151(2):511-9. PubMed ID: 9927447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic Screens to Study GAA/TTC and Inverted Repeat Instability in Saccharomyces cerevisiae.
    Guo W; Lobachev KS
    Methods Mol Biol; 2020; 2056():103-112. PubMed ID: 31586343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Rad27 (Fen-1) nuclease inhibits Ty1 mobility in Saccharomyces cerevisiae.
    Sundararajan A; Lee BS; Garfinkel DJ
    Genetics; 2003 Jan; 163(1):55-67. PubMed ID: 12586696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide analysis of DNA turnover and gene expression in stationary-phase Saccharomyces cerevisiae.
    de Morgan A; Brodsky L; Ronin Y; Nevo E; Korol A; Kashi Y
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1758-1771. PubMed ID: 20167621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae.
    Zhao H; Eide DJ
    Mol Cell Biol; 1997 Sep; 17(9):5044-52. PubMed ID: 9271382
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Positive and negative roles of homologous recombination in the maintenance of genome stability in Saccharomyces cerevisiae.
    Yoshida J; Umezu K; Maki H
    Genetics; 2003 May; 164(1):31-46. PubMed ID: 12750319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A haploproficient interaction of the transaldolase paralogue NQM1 with the transcription factor VHR1 affects stationary phase survival and oxidative stress resistance.
    Michel S; Keller MA; Wamelink MM; Ralser M
    BMC Genet; 2015 Feb; 16():13. PubMed ID: 25887987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae.
    Taggart J; MacDiarmid CW; Haws S; Eide DJ
    Mol Microbiol; 2017 Dec; 106(5):678-689. PubMed ID: 28963784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.