These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2305032)

  • 1. Multiple components of split-dose repair in plateau-phase mammalian cells: a new challenge for phenomenological modelers.
    Nelson JM; Braby LA; Metting NF; Roesch WC
    Radiat Res; 1990 Feb; 121(2):154-60. PubMed ID: 2305032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tests of the double-strand break, lethal-potentially lethal and repair-misrepair models for mammalian cell survival using data for survival as a function of delayed-plating interval for log-phase Chinese hamster V79 cells.
    Lange CS; Mayer PJ; Reddy NM
    Radiat Res; 1997 Sep; 148(3):285-92. PubMed ID: 9291360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-rate evidence for two kinds of radiation damage in stationary-phase mammalian cells.
    Metting NF; Braby LA; Roesch WC; Nelson JM
    Radiat Res; 1985 Aug; 103(2):204-18. PubMed ID: 4023176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiosensitivity, apoptosis and repair of DNA double-strand breaks in radiation-sensitive Chinese hamster ovary cell mutants treated at different dose rates.
    Hu Q; Hill RP
    Radiat Res; 1996 Dec; 146(6):636-45. PubMed ID: 8955713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of arabinofuranosyladenine on radiation-induced chromosome damage in plateau-phase CHO cells measured by premature chromosome condensation: implications for repair and fixation of alpha-PLD.
    Iliakis G; Pantelias GE; Seaner R
    Radiat Res; 1988 May; 114(2):361-78. PubMed ID: 3375431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lethal and potentially lethal lesions induced by radiation--a unified repair model.
    Curtis SB
    Radiat Res; 1986 May; 106(2):252-70. PubMed ID: 3704115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery from potentially lethal damage and recruitment time of noncycling clonogenic cells in 9L confluent monolayers and spheroids.
    Rodriguez A; Alpen EL; Mendonca M; DeGuzman RJ
    Radiat Res; 1988 Jun; 114(3):515-27. PubMed ID: 3375440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The saturated repair kinetics of Chinese hamster V79 cells suggests a damage accumulation--interaction model of cell killing.
    Reddy NM; Mayer PJ; Lange CS
    Radiat Res; 1990 Mar; 121(3):304-11. PubMed ID: 2179981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of reduced temperature and/or starvation conditions on the radiosensitivity and repair of potentially lethal damage and sublethal damage in L5178Y-R and L5178Y-S cells.
    Kapiszewska M; Lange CS
    Radiat Res; 1988 Mar; 113(3):458-72. PubMed ID: 3347703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between the recovery from sublethal X-ray damage and the rejoining of chromosome breaks in normal human fibroblasts.
    Bedford JS; Cornforth MN
    Radiat Res; 1987 Sep; 111(3):406-23. PubMed ID: 3659276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of chromatin decondensation on DNA damage and repair.
    Yasui LS; Higashikubo R; Warters RL
    Radiat Res; 1987 Nov; 112(2):318-30. PubMed ID: 3685259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentially lethal damage versus sublethal damage: independent repair processes in actively growing Chinese hamster cells.
    Utsumi H; Elkind MM
    Radiat Res; 1979 Feb; 77(2):346-60. PubMed ID: 441249
    [No Abstract]   [Full Text] [Related]  

  • 13. Enhanced recovery from ionizing radiation damage in a lepidopteran insect cell line.
    Koval TM
    Radiat Res; 1988 Sep; 115(3):413-20. PubMed ID: 3174927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The combined effects of sublethal damage repair, cellular repopulation and redistribution in the mitotic cycle. II. The dependency of radiosensitivity parameters alpha, beta and t(0) on biological age for Chinese hamster V79 cells.
    Zaider M
    Radiat Res; 1996 Apr; 145(4):467-73. PubMed ID: 8600507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of the sensitivity and repair of potentially lethal damage by diethyldithiocarbamate during and following exposure of plateau-phase cultures of mammalian cells to radiation and cis-diamminedichloroplatinum(II).
    Evans RG; Engel C; Wheatley C; Nielsen J
    Cancer Res; 1982 Aug; 42(8):3074-8. PubMed ID: 6284357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-cycle-dependent repair of potentially lethal damage in the XR-1 gamma-ray-sensitive Chinese hamster ovary cell.
    Stamato TD; Dipatri A; Giaccia A
    Radiat Res; 1988 Aug; 115(2):325-33. PubMed ID: 3406371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery from sublethal and potentially lethal damage in an X-ray-sensitive CHO cell.
    Schwartz JL; Giovanazzi S; Weichselbaum RR
    Radiat Res; 1987 Jul; 111(1):58-67. PubMed ID: 3602355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is there a cell-to-cell contact effect on the X-ray dose-survival response of mammalian cells?
    Reddy NM; Cieszka KA; Rozenblyum S; Lange CS
    Scanning Microsc; 1994; 8(3):621-8; discussion 628-9. PubMed ID: 7747161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saturable repair models of radiation action in mammalian cells.
    Goodhead DT
    Radiat Res Suppl; 1985; 8():S58-67. PubMed ID: 3867090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery from lethal and mutagenic damage during postirradiation holding and low-dose-rate irradiations of cultured hamster cells.
    Thacker J; Stretch A
    Radiat Res; 1983 Nov; 96(2):380-92. PubMed ID: 6647766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.