These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2305032)

  • 21. Interaction of ionizing radiation with the topoisomerase I poison camptothecin in growing V-79 and HeLa cells.
    Hennequin C; Giocanti N; Balosso J; Favaudon V
    Cancer Res; 1994 Apr; 54(7):1720-8. PubMed ID: 8137287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of ionizing radiation recovery processes in polyamine-depleted Chinese hamster cells.
    Gerner EW; Tome ME; Fry SE; Bowden GT
    Cancer Res; 1988 Sep; 48(17):4881-5. PubMed ID: 3136915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An ionizing radiation-sensitive mutant of CHO cells: irs-20. II. Dose-rate effects and cellular recovery processes.
    Stackhouse MA; Bedford JS
    Radiat Res; 1993 Nov; 136(2):250-4. PubMed ID: 8248482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of hypoxia on recovery from damage induced by heat and radiation in plateau-phase CHO cells.
    Rao BS; Hopwood LE
    Radiat Res; 1985 Feb; 101(2):312-25. PubMed ID: 3975360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Independent forms of potentially lethal damage fixed in plateau-phase Chinese hamster cells by postirradiation treatment in hypertonic salt solution or araA.
    Iliakis G; Bryant PE; Ngo FQ
    Radiat Res; 1985 Dec; 104(3):329-45. PubMed ID: 4080979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on recovery from chemically induced damage in mammalian cells.
    Barranco SC; Novak JK; Humphrey RM
    Cancer Res; 1975 May; 35(5):1194-204. PubMed ID: 47265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dose fractionation effects in plateau-phase cultures of C3H 10T1/2 cells and their transformed counterparts.
    Zeman EM; Bedford JS
    Radiat Res; 1985 Feb; 101(2):373-93. PubMed ID: 3975362
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of X-ray-induced potentially lethal damage (PLD) repair in aerobic plateau-phase Chinese hamster cells by misonidazole.
    Brown DM; Dionet C; Brown JM
    Radiat Res; 1984 Jan; 97(1):162-70. PubMed ID: 6229806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modifications in repair and expression of potentially lethal damage (alpha-PLD) as measured by delayed plating or treatment with beta-araA in plateau-phase Ehrlich ascites tumor cells after exposure to charged particles of various specific energies.
    Bertsche U; Iliakis G
    Radiat Res; 1987 Jul; 111(1):26-46. PubMed ID: 3037588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing the role of biochemical processes in determining response to ionizing radiations.
    Nelson JM; Braby LA; Metting NF; Roesch WC
    Health Phys; 1989; 57 Suppl 1():369-76. PubMed ID: 2606695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for reduced capacity for damage accumulation and repair in plateau-phase C3H 10T1/2 cells following multiple-dose irradiation with gamma rays.
    Ngo FQ; Youngman K; Suzuki S; Koumoundouros I; Iliakis G
    Radiat Res; 1986 Jun; 106(3):380-95. PubMed ID: 3714980
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the biophysical interpretation of lethal DNA lesions induced by ionising radiation.
    Kundrát P; Stewart RD
    Radiat Prot Dosimetry; 2006; 122(1-4):169-72. PubMed ID: 17145725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repair of sublethal damage in mammalian cells irradiated at ultrahigh dose rates.
    Gerweck LE; Epp ER; Michaels HB; Clifton Ling C; Peterson EC
    Radiat Res; 1979 Jan; 77(1):156-69. PubMed ID: 424512
    [No Abstract]   [Full Text] [Related]  

  • 34. The repair of sublethal damage in diploid human fibroblasts: a comparison between human and rodent cell lines.
    Freeman ML; Sierra E; Hall EJ
    Radiat Res; 1983 Aug; 95(2):382-91. PubMed ID: 6611855
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiation-induced DNA damage and repair in cells of a radiosensitive human malignant glioma cell line.
    Allalunis-Turner MJ; Zia PK; Barron GM; Mirzayans R; Day RS
    Radiat Res; 1995 Dec; 144(3):288-93. PubMed ID: 7494872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple model of radiation action in cells based on a repair saturation mechanism.
    Sánchez-Reyes A
    Radiat Res; 1992 May; 130(2):139-47. PubMed ID: 1574569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An acidic extracellular environment reduces the fixation of radiation damage.
    Freeman ML; Sierra E
    Radiat Res; 1984 Jan; 97(1):154-61. PubMed ID: 6695039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model of cell killing by low-dose-rate radiation including repair of sublethal damage, G2 block, and cell division.
    Dillehay LE
    Radiat Res; 1990 Nov; 124(2):201-7. PubMed ID: 2247600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insulin and insulin-like growth factor-1 (IGF-1) inhibit repair of potentially lethal radiation damage and chromosome aberrations and alter DNA repair kinetics in plateau-phase A549 cells.
    Jayanth VR; Belfi CA; Swick AR; Varnes ME
    Radiat Res; 1995 Aug; 143(2):165-74. PubMed ID: 7631009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human and rodent cell lines showing no differences in the induction but differing in the repair kinetics of radiation-induced DNA base damage.
    Purschke M; Kasten-Pisula U; Brammer I; Dikomey E
    Int J Radiat Biol; 2004 Jan; 80(1):29-38. PubMed ID: 14761848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.