BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23050555)

  • 1. Mobilization of technetium from reduced sediments under seawater inundation and intrusion scenarios.
    Eagling J; Worsfold PJ; Blake WH; Keith-Roach MJ
    Environ Sci Technol; 2012 Nov; 46(21):11798-803. PubMed ID: 23050555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate of 90Sr and U(VI) in Dounreay sediments following saline inundation and erosion.
    Eagling J; Worsfold PJ; Blake WH; Keith-Roach MJ
    Chemosphere; 2013 Aug; 92(8):911-7. PubMed ID: 23541149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water.
    Ahmed B; Cao B; Mishra B; Boyanov MI; Kemner KM; Fredrickson JK; Beyenal H
    Water Res; 2012 Sep; 46(13):3989-98. PubMed ID: 22683408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seawater-induced mobilization of trace metals from mackinawite-rich estuarine sediments.
    Wong VN; Johnston SG; Burton ED; Bush RT; Sullivan LA; Slavich PG
    Water Res; 2013 Feb; 47(2):821-32. PubMed ID: 23199454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reoxidation behavior of technetium, iron, and sulfur in estuarine sediments.
    Burke IT; Boothman C; Lloyd JR; Livens FR; Charnock JM; McBeth JM; Mortimer RJ; Morris K
    Environ Sci Technol; 2006 Jun; 40(11):3529-35. PubMed ID: 16786690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolution of uranium-bearing minerals and mobilization of uranium by organic ligands in a biologically reduced sediment.
    Luo W; Gu B
    Environ Sci Technol; 2011 Apr; 45(7):2994-9. PubMed ID: 21395303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of nitrate in conditioning aquifer sediments for technetium bioreduction.
    Law GT; Geissler A; Boothman C; Burke IT; Livens FR; Lloyd JR; Morris K
    Environ Sci Technol; 2010 Jan; 44(1):150-5. PubMed ID: 20039745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential.
    Wildung RE; Li SW; Murray CJ; Krupka KM; Xie Y; Hess NJ; Roden EE
    FEMS Microbiol Ecol; 2004 Jul; 49(1):151-62. PubMed ID: 19712393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of alkaline co-contaminants on technetium mobility in vadose zone sediments.
    Szecsody JE; Jansik DP; McKinley JP; Hess NJ
    J Environ Radioact; 2014 Sep; 135():147-60. PubMed ID: 24814749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uranium storage mechanisms in wet-dry redox cycled sediments.
    Noël V; Boye K; Kukkadapu RK; Li Q; Bargar JR
    Water Res; 2019 Apr; 152():251-263. PubMed ID: 30682569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation of technetium(IV) in bicarbonate media.
    Alliot I; Alliot C; Vitorge P; Fattahi M
    Environ Sci Technol; 2009 Dec; 43(24):9174-82. PubMed ID: 20000508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic mobilization in a seawater inundated acid sulfate soil.
    Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA; McElnea A; Ahern CR; Smith CD; Powell B; Hocking RK
    Environ Sci Technol; 2010 Mar; 44(6):1968-73. PubMed ID: 20155899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of complex hydrodynamic processes on the horizontal and vertical distribution of Tc-99 in the Irish Sea.
    Olbert AI; Hartnett M; Dabrowski T; Kelleher K
    Sci Total Environ; 2010 Dec; 409(1):150-61. PubMed ID: 20947135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of technetium-99 in the Irish Sea?
    Leonard KS; McCubbin D; McDonald P; Service M; Bonfield R; Conney S
    Sci Total Environ; 2004 Apr; 322(1-3):255-70. PubMed ID: 15081753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of 99-technetium (VII) by Fe(II)-goethite and limited reoxidation.
    Um W; Chang HS; Icenhower JP; Lukens WW; Serne RJ; Qafoku NP; Westsik JH; Buck EC; Smith SC
    Environ Sci Technol; 2011 Jun; 45(11):4904-13. PubMed ID: 21557602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the biogeochemical behavior of technetium using a novel nuclear imaging approach.
    Lear G; McBeth JM; Boothman C; Gunning DJ; Ellis BL; Lawson RS; Morris K; Burke IT; Bryan ND; Brown AP; Livens FR; Lloyd JR
    Environ Sci Technol; 2010 Jan; 44(1):156-62. PubMed ID: 20039746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron and arsenic cycling in intertidal surface sediments during wetland remediation.
    Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA
    Environ Sci Technol; 2011 Mar; 45(6):2179-85. PubMed ID: 21322553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring Tc dynamics in a bioreduced sediment: an investigation with gamma camera imaging of (99m)Tc-pertechnetate and (99m)Tc-DTPA.
    Vandehey NT; O'Neil JP; Slowey AJ; Boutchko R; Druhan JL; Moses WW; Nico PS
    Environ Sci Technol; 2012 Nov; 46(22):12583-90. PubMed ID: 23078357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution of technetium(IV) oxide by natural and synthetic organic ligands under both reducing and oxidizing conditions.
    Gu B; Dong W; Liang L; Wall NA
    Environ Sci Technol; 2011 Jun; 45(11):4771-7. PubMed ID: 21539349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.