BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23050555)

  • 21. (99)Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally Reduced Sediments.
    Liu Y; Liu C; Kukkadapu RK; McKinley JP; Zachara J; Plymale AE; Miller MD; Varga T; Resch CT
    Environ Sci Technol; 2015 Nov; 49(22):13403-12. PubMed ID: 26469942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxic Fe(III) reduction could have generated Fe(II) in the photic zone of Precambrian seawater.
    Swanner ED; Maisch M; Wu W; Kappler A
    Sci Rep; 2018 Mar; 8(1):4238. PubMed ID: 29523861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms.
    Alam MS; Cheng T
    J Contam Hydrol; 2014 Aug; 164():72-87. PubMed ID: 24954631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions.
    Sun J; Bostick BC; Mailloux BJ; Ross JM; Chillrud SN
    J Hazard Mater; 2016 Jul; 311():125-33. PubMed ID: 26970042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh.
    Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD
    Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-Term Immobilization of Technetium via Bioremediation with Slow-Release Substrates.
    Newsome L; Cleary A; Morris K; Lloyd JR
    Environ Sci Technol; 2017 Feb; 51(3):1595-1604. PubMed ID: 28051295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequestering uranium and technetium through co-precipitation with aluminum in a contaminated acidic environment.
    Luo W; Kelly SD; Kemner KM; Watson D; Zhou J; Jardine PM; Gu B
    Environ Sci Technol; 2009 Oct; 43(19):7516-22. PubMed ID: 19848170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping of spatial multi-scale sources of arsenic variation in groundwater on ChiaNan floodplain of Taiwan.
    Lin YB; Lin YP; Liu CW; Tan YC
    Sci Total Environ; 2006 Oct; 370(1):168-81. PubMed ID: 16904165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of radionuclides in the guano sediments of Xisha Islands, South China Sea and its implication.
    Xu LQ; Liu XD; Sun LG; Yan H; Liu Y; Luo YH; Huang J; Wang YH
    J Environ Radioact; 2010 May; 101(5):362-8. PubMed ID: 20346552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reductive immobilization of pertechnetate in soil and groundwater using synthetic pyrite nanoparticles.
    Huo L; Xie W; Qian T; Guan X; Zhao D
    Chemosphere; 2017 May; 174():456-465. PubMed ID: 28187392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of climate and land use changes on groundwater resources in coastal aquifers.
    Priyantha Ranjan S; Kazama S; Sawamoto M
    J Environ Manage; 2006 Jul; 80(1):25-35. PubMed ID: 16305816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of iron nanoparticles on technetium-contaminated groundwater and sediment microbial communities.
    Newsome L; Morris K; Cleary A; Masters-Waage NK; Boothman C; Joshi N; Atherton N; Lloyd JR
    J Hazard Mater; 2019 Feb; 364():134-142. PubMed ID: 30343175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of Tc-99 monitoring within the western Irish Sea using a numerical model.
    Olbert AI; Hartnett M; Dabrowski T
    Sci Total Environ; 2010 Aug; 408(17):3671-82. PubMed ID: 20537687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retention of immobile Se(0) in flow-through aquifer column systems during bioreduction and oxic-remobilization.
    Ho MS; Vettese GF; Morris K; Lloyd JR; Boothman C; Bower WR; Shaw S; Law GTW
    Sci Total Environ; 2022 Aug; 834():155332. PubMed ID: 35460788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial transformations of arsenic: mobilization from glauconitic sediments to water.
    Mumford AC; Barringer JL; Benzel WM; Reilly PA; Young LY
    Water Res; 2012 Jun; 46(9):2859-68. PubMed ID: 22494492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aqueous (99)Tc, (129)I and (137)Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents.
    Li D; Kaplan DI; Knox AS; Crapse KP; Diprete DP
    J Environ Radioact; 2014 Oct; 136():56-63. PubMed ID: 24905141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
    Flury M; Czigány S; Chen G; Harsh JB
    J Contam Hydrol; 2004 Jul; 71(1-4):111-26. PubMed ID: 15145564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mercury speciation and transport via submarine groundwater discharge at a southern California coastal lagoon system.
    Ganguli PM; Conaway CH; Swarzenski PW; Izbicki JA; Flegal AR
    Environ Sci Technol; 2012 Feb; 46(3):1480-8. PubMed ID: 22283682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater.
    Anawar HM; Akai J; Sakugawa H
    Chemosphere; 2004 Feb; 54(6):753-62. PubMed ID: 14602108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.