BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 23050694)

  • 1. Contrasting evolution of a satellite DNA and its ancestral IGS rDNA in Phaseolus (Fabaceae).
    Almeida C; Fonsêca A; dos Santos KG; Mosiolek M; Pedrosa-Harand A
    Genome; 2012 Sep; 55(9):683-9. PubMed ID: 23050694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting rDNA evolution in lima bean (Phaseolus lunatus L.) and common bean (P. vulgaris L., Fabaceae).
    Almeida C; Pedrosa-Harand A
    Cytogenet Genome Res; 2011; 132(3):212-7. PubMed ID: 21063080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary dynamics of satellite DNA repeats from Phaseolus beans.
    Ribeiro T; Dos Santos KG; Richard MM; Sévignac M; Thareau V; Geffroy V; Pedrosa-Harand A
    Protoplasma; 2017 Mar; 254(2):791-801. PubMed ID: 27335007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence In Situ Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris) and Relatives.
    Iwata-Otsubo A; Radke B; Findley S; Abernathy B; Vallejos CE; Jackson SA
    G3 (Bethesda); 2016 Apr; 6(4):1013-22. PubMed ID: 26865698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana.
    Lim KY; Skalicka K; Koukalova B; Volkov RA; Matyasek R; Hemleben V; Leitch AR; Kovarik A
    Genetics; 2004 Apr; 166(4):1935-46. PubMed ID: 15126410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the sequence dynamics of the formation of genus-specific satellite DNAs in the family solanaceae.
    Jo SH; Park HM; Kim SM; Kim HH; Hur CG; Choi D
    Heredity (Edinb); 2011 May; 106(5):876-85. PubMed ID: 21063436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal conservation and sequence diversity of ribosomal RNA genes of two distant Oryza species.
    Chang KD; Fang SA; Chang FC; Chung MC
    Genomics; 2010 Sep; 96(3):181-90. PubMed ID: 20580815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Karyotype stability in the genus Phaseolus evidenced by the comparative mapping of the wild species Phaseolus microcarpus.
    Fonsêca A; Pedrosa-Harand A
    Genome; 2013 Jun; 56(6):335-43. PubMed ID: 23957673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of ribosomal DNA-derived satellite repeat in tomato genome.
    Jo SH; Koo DH; Kim JF; Hur CG; Lee S; Yang TJ; Kwon SY; Choi D
    BMC Plant Biol; 2009 Apr; 9():42. PubMed ID: 19351415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incomplete sequence homogenization in 45S rDNA multigene families: intermixed IGS heterogeneity within the single NOR locus of the polyploid species Medicago arborea (Fabaceae).
    Galián JA; Rosato M; Rosselló JA
    Ann Bot; 2014 Aug; 114(2):243-51. PubMed ID: 24925322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization.
    Lee YI; Yap JW; Izan S; Leitch IJ; Fay MF; Lee YC; Hidalgo O; Dodsworth S; Smulders MJM; Gravendeel B; Leitch AR
    BMC Genomics; 2018 Aug; 19(1):578. PubMed ID: 30068293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae).
    Mahelka V; Kopecky D; Baum BR
    Mol Biol Evol; 2013 Sep; 30(9):2065-86. PubMed ID: 23741054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution.
    Pedrosa-Harand A; de Almeida CC; Mosiolek M; Blair MW; Schweizer D; Guerra M
    Theor Appl Genet; 2006 Mar; 112(5):924-33. PubMed ID: 16397788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speeding up chromosome evolution in Phaseolus: multiple rearrangements associated with a one-step descending dysploidy.
    Fonsêca A; Ferraz ME; Pedrosa-Harand A
    Chromosoma; 2016 Jun; 125(3):413-21. PubMed ID: 26490170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linked 5S and 45S rDNA sites are highly conserved through the subfamily Aurantioideae (Rutaceae).
    Barros E Silva AE; Dos Santos Soares Filho W; Guerra M
    Cytogenet Genome Res; 2013; 140(1):62-9. PubMed ID: 23635472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single integration and spread of a Copia-like sequence nested in rDNA intergenic spacers of Allium cernuum (Alliaceae).
    Chester M; Sykorova E; Fajkus J; Leitch AR
    Cytogenet Genome Res; 2010 Jul; 129(1-3):35-46. PubMed ID: 20516662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence subfamilies of satellite repeats related to rDNA intergenic spacer are differentially amplified on Vicia sativa chromosomes.
    Macas J; Navrátilová A; Mészáros T
    Chromosoma; 2003 Oct; 112(3):152-8. PubMed ID: 14579131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosomal RNA Genes Contribute to the Formation of Pseudogenes and Junk DNA in the Human Genome.
    Robicheau BM; Susko E; Harrigan AM; Snyder M
    Genome Biol Evol; 2017 Feb; 9(2):380-397. PubMed ID: 28204512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genetic analysis of the 45S rDNA intergenic spacers from three Saccharum species.
    Huang Y; Yu F; Li X; Luo L; Wu J; Yang Y; Deng Z; Chen R; Zhang M
    PLoS One; 2017; 12(8):e0183447. PubMed ID: 28817651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal distribution of 18S-25S rDNA in four Lupinus species visualized by fluorescence in situ hybridization.
    Kong F; Rudloff E; Snowdon RJ; Wang YP
    Genetika; 2009 Aug; 45(8):1148-52. PubMed ID: 19769306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.