These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23050937)

  • 1. Compensatory dynamics and the stability of phytoplankton biomass during four decades of eutrophication and oligotrophication.
    Jochimsen MC; Kümmerlin R; Straile D
    Ecol Lett; 2013 Jan; 16(1):81-9. PubMed ID: 23050937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term dynamics and drivers of phytoplankton biomass in eutrophic Lake Taihu.
    Zhang M; Shi X; Yang Z; Yu Y; Shi L; Qin B
    Sci Total Environ; 2018 Dec; 645():876-886. PubMed ID: 30032083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eutrophication conditions and ecological status in typical bays of Lake Taihu in China.
    Ye C; Xu Q; Kong H; Shen Z; Yan C
    Environ Monit Assess; 2007 Dec; 135(1-3):217-25. PubMed ID: 17345009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warming and oligotrophication cause shifts in freshwater phytoplankton communities.
    Verbeek L; Gall A; Hillebrand H; Striebel M
    Glob Chang Biol; 2018 Oct; 24(10):4532-4543. PubMed ID: 29856108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecosystem-level effects of re-oligotrophication and N:P imbalances in rivers and estuaries on a global scale.
    Ibáñez C; Caiola N; Barquín J; Belmar O; Benito-Granell X; Casals F; Fennessy S; Hughes J; Palmer M; Peñuelas J; Romero E; Sardans J; Williams M
    Glob Chang Biol; 2023 Mar; 29(5):1248-1266. PubMed ID: 36366939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term impacts of nutrient control, climate change, and invasive clams on phytoplankton and cyanobacteria biomass in a large temperate river.
    Minaudo C; Abonyi A; Leitão M; Lançon AM; Floury M; Descy JP; Moatar F
    Sci Total Environ; 2021 Feb; 756():144074. PubMed ID: 33303198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food web structure in the recently flooded Sep Reservoir as inferred from phytoplankton population dynamics and living microbial biomass.
    Tadonléké RD; Jugnia LB; Sime-Ngando T; Devaux J; Romagoux JC
    Microb Ecol; 2002 Jan; 43(1):67-81. PubMed ID: 11984630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption.
    Taipale SJ; Vuorio K; Strandberg U; Kahilainen KK; Järvinen M; Hiltunen M; Peltomaa E; Kankaala P
    Environ Int; 2016 Nov; 96():156-166. PubMed ID: 27685803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light and nutrient control phytoplankton biomass responses to global change in northern lakes.
    Bergström AK; Karlsson J
    Glob Chang Biol; 2019 Jun; 25(6):2021-2029. PubMed ID: 30897262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscale survey of western and northwestern Irish lakes--spatial and aestival patterns in trophic status and phytoplankton community structure.
    Touzet N
    J Environ Manage; 2011 Oct; 92(10):2844-54. PubMed ID: 21764507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial heterogeneity of lake eutrophication caused by physiogeographic conditions: An analysis of 143 lakes in China.
    Ding J; Cao J; Xu Q; Xi B; Su J; Gao R; Huo S; Liu H
    J Environ Sci (China); 2015 Apr; 30():140-7. PubMed ID: 25872720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-dimensional water quality modeling approach for exploring the eutrophication responses to load reduction scenarios in Lake Yilong (China).
    Zhao L; Li Y; Zou R; He B; Zhu X; Liu Y; Wang J; Zhu Y
    Environ Pollut; 2013 Jun; 177():13-21. PubMed ID: 23455397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift.
    North RP; North RL; Livingstone DM; Köster O; Kipfer R
    Glob Chang Biol; 2014 Mar; 20(3):811-23. PubMed ID: 24038822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warming and CO
    Cabrerizo MJ; Álvarez-Manzaneda MI; León-Palmero E; Guerrero-Jiménez G; de Senerpont Domis LN; Teurlincx S; González-Olalla JM
    Water Res; 2020 Apr; 173():115579. PubMed ID: 32059127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first decade of oligotrophication of Lake Constance : II. The response of phytoplankton taxonomic composition.
    Sommer U; Gaedke U; Schweizer A
    Oecologia; 1993 Mar; 93(2):276-284. PubMed ID: 28313618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological and chemical factors influencing shallow lake eutrophication: a long-term study.
    Lau SS; Lane SN
    Sci Total Environ; 2002 Apr; 288(3):167-81. PubMed ID: 11991522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the nutrient ratios and phytoplankton community after declines in nutrient concentrations in a semi-enclosed bay in Hong Kong.
    Lie AA; Wong CK; Lam JY; Liu JH; Yung YK
    Mar Environ Res; 2011 Apr; 71(3):178-88. PubMed ID: 21316754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic theory and modelling of complex food-web dynamics in Lake Constance.
    Boit A; Martinez ND; Williams RJ; Gaedke U
    Ecol Lett; 2012 Jun; 15(6):594-602. PubMed ID: 22513046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epipelon, phytoplankton and zooplankton responses to the experimental oligotrophication in a eutrophic shallow reservoir.
    Amaral LM; Carolina de Almeida Castilho M; Henry R; Ferragut C
    Environ Pollut; 2020 Aug; 263(Pt A):114603. PubMed ID: 33618459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon dioxide supersaturation promotes primary production in lakes.
    Jansson M; Karlsson J; Jonsson A
    Ecol Lett; 2012 Jun; 15(6):527-32. PubMed ID: 22420750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.