BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23051107)

  • 21. Nano-scaling law: geometric foundation of thiolated gold nanomolecules.
    Dass A
    Nanoscale; 2012 Apr; 4(7):2260-3. PubMed ID: 22362222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the electronic structure and chemical bonding of the "staple" motifs of thiolate gold nanoparticles: Au(SCH3)2- and Au2(SCH3)3-.
    Ning CG; Xiong XG; Wang YL; Li J; Wang LS
    Phys Chem Chem Phys; 2012 Jul; 14(26):9323-9. PubMed ID: 22278407
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation and NMR spectroscopy of ω-thiol protected α,ω-alkanedithiol-coated gold nanoparticles and their usage in molecular charge transport junctions.
    Wallner A; Jafri SH; Blom T; Gogoll A; Leifer K; Baumgartner J; Ottosson H
    Langmuir; 2011 Jul; 27(14):9057-67. PubMed ID: 21667939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold nanoparticles protected with thiol-derivatized amphiphilic poly(epsilon-caprolactone)-b-poly(acrylic acid).
    Javakhishvili I; Hvilsted S
    Biomacromolecules; 2009 Jan; 10(1):74-81. PubMed ID: 19053294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A density functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: I. Molecular and dissociative adsorption.
    Karhánek D; Bučko T; Hafner J
    J Phys Condens Matter; 2010 Jul; 22(26):265005. PubMed ID: 21386471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical examination of solvent and R group dependence in gold thiolate nanoparticle synthesis.
    Neidhart SM; Barngrover BM; Aikens CM
    Phys Chem Chem Phys; 2015 Mar; 17(12):7676-80. PubMed ID: 25690701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding of chloroquine-conjugated gold nanoparticles with bovine serum albumin.
    Joshi P; Chakraborty S; Dey S; Shanker V; Ansari ZA; Singh SP; Chakrabarti P
    J Colloid Interface Sci; 2011 Mar; 355(2):402-9. PubMed ID: 21216410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stoichiometric functionalization of gold nanoparticles in solution through a free radical polymerization approach.
    Krüger C; Agarwal S; Greiner A
    J Am Chem Soc; 2008 Mar; 130(9):2710-1. PubMed ID: 18254626
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing chiral interfaces by infrared spectroscopic methods.
    Bieri M; Gautier C; Bürgi T
    Phys Chem Chem Phys; 2007 Feb; 9(6):671-85. PubMed ID: 17268678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rationally designed ligands that inhibit the aggregation of large gold nanoparticles in solution.
    Zhang S; Leem G; Srisombat LO; Lee TR
    J Am Chem Soc; 2008 Jan; 130(1):113-20. PubMed ID: 18072768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical oxidative formation of ordered monolayers of thiol molecules on Au(111) surface.
    Uosaki K
    Chem Rec; 2009; 9(3):199-209. PubMed ID: 19431149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating the structural evolution of thiolate protected gold clusters from first-principles.
    Pei Y; Zeng XC
    Nanoscale; 2012 Jul; 4(14):4054-72. PubMed ID: 22635136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption characteristics of tripodal thiol-functionalized porphyrins on gold.
    Wei L; Tiznado H; Liu G; Padmaja K; Lindsey JS; Zaera F; Bocian DF
    J Phys Chem B; 2005 Dec; 109(50):23963-71. PubMed ID: 16375385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface fragmentation of complexes from thiolate protected gold nanoparticles by ion mobility-mass spectrometry.
    Harkness KM; Fenn LS; Cliffel DE; McLean JA
    Anal Chem; 2010 Apr; 82(7):3061-6. PubMed ID: 20229984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrically conducting nanopatterns formed by chemical e-beam lithography via gold nanoparticle seeds.
    Schaal PA; Besmehn A; Maynicke E; Noyong M; Beschoten B; Simon U
    Langmuir; 2012 Feb; 28(5):2448-54. PubMed ID: 22201225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical study of the reduction mechanism of sulfoxides by thiols.
    Balta B; Monard G; Ruiz-López MF; Antoine M; Gand A; Boschi-Muller S; Branlant G
    J Phys Chem A; 2006 Jun; 110(24):7628-36. PubMed ID: 16774207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water-soluble gold nanoparticles protected by fluorinated amphiphilic thiolates.
    Gentilini C; Evangelista F; Rudolf P; Franchi P; Lucarini M; Pasquato L
    J Am Chem Soc; 2008 Nov; 130(46):15678-82. PubMed ID: 18950162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thiolate ligands for synthesis of water-soluble gold clusters.
    Ackerson CJ; Jadzinsky PD; Kornberg RD
    J Am Chem Soc; 2005 May; 127(18):6550-1. PubMed ID: 15869273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonionic surfactant-capped gold nanoparticles as postcolumn reagents for high-performance liquid chromatography assay of low-molecular-mass biothiols.
    Lu C; Zu Y; Yam VW
    J Chromatogr A; 2007 Sep; 1163(1-2):328-32. PubMed ID: 17689546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Double-shell gold nanoparticle-based DNA-carriers with poly-L-lysine binding surface.
    Stobiecka M; Hepel M
    Biomaterials; 2011 Apr; 32(12):3312-21. PubMed ID: 21306772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.