BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23051706)

  • 1. Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes.
    Windisch HS; Lucassen M; Frickenhaus S
    BMC Genomics; 2012 Oct; 13():549. PubMed ID: 23051706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish.
    Heise K; Estevez MS; Puntarulo S; Galleano M; Nikinmaa M; Pörtner HO; Abele D
    J Comp Physiol B; 2007 Oct; 177(7):765-77. PubMed ID: 17579869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-dependent protein synthesis capacities in Antarctic and temperate (North Sea) fish (Zoarcidae).
    Storch D; Lannig G; Pörtner HO
    J Exp Biol; 2005 Jun; 208(Pt 12):2409-20. PubMed ID: 15939780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum).
    Windisch HS; Frickenhaus S; John U; Knust R; Pörtner HO; Lucassen M
    Mol Ecol; 2014 Jul; 23(14):3469-82. PubMed ID: 24897925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary Adaptation of Protein Turnover in White Muscle of Stenothermal Antarctic Fish: Elevated Cold Compensation at Reduced Thermal Responsiveness.
    Krebs N; Bock C; Tebben J; Mark FC; Lucassen M; Lannig G; Pörtner HO
    Biomolecules; 2023 Oct; 13(10):. PubMed ID: 37892189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model of gene expression in extreme cold - reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    BMC Genomics; 2013 Sep; 14():634. PubMed ID: 24053439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial proliferation in the permanent vs. temporary cold: enzyme activities and mRNA levels in Antarctic and temperate zoarcid fish.
    Lucassen M; Schmidt A; Eckerle LG; Pörtner HO
    Am J Physiol Regul Integr Comp Physiol; 2003 Dec; 285(6):R1410-20. PubMed ID: 12907412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the complement system C3 gene in Antarctic teleosts.
    Melillo D; Varriale S; Giacomelli S; Natale L; Bargelloni L; Oreste U; Pinto MR; Coscia MR
    Mol Immunol; 2015 Aug; 66(2):299-309. PubMed ID: 25909494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular adaptations in Antarctic fish and marine microorganisms.
    Giordano D; Russo R; di Prisco G; Verde C
    Mar Genomics; 2012 Jun; 6():1-6. PubMed ID: 22578653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent lipid levels and components in polar and temperate eelpout (Zoarcidae).
    Brodte E; Graeve M; Jacob U; Knust R; Pörtner HO
    Fish Physiol Biochem; 2008 Sep; 34(3):261-74. PubMed ID: 18665464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal sensitivity of uncoupling protein expression in polar and temperate fish.
    Mark FC; Lucassen M; Pörtner HO
    Comp Biochem Physiol Part D Genomics Proteomics; 2006 Sep; 1(3):365-74. PubMed ID: 20483268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii.
    Huth TJ; Place SP
    BMC Genomics; 2013 Nov; 14():805. PubMed ID: 24252228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antarctic notothenioid fishes: genomic resources and strategies for analyzing an adaptive radiation.
    Detrich HW; Amemiya CT
    Integr Comp Biol; 2010 Dec; 50(6):1009-17. PubMed ID: 21082069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution.
    di Prisco G; Eastman JT; Giordano D; Parisi E; Verde C
    Gene; 2007 Aug; 398(1-2):143-55. PubMed ID: 17553637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GC bias lead to increased small amino acids and random coils of proteins in cold-water fishes.
    Zhang D; Hu P; Liu T; Wang J; Jiang S; Xu Q; Chen L
    BMC Genomics; 2018 May; 19(1):315. PubMed ID: 29720106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-energy turnover at low temperatures: recovery from exhaustive exercise in Antarctic and temperate eelpouts.
    Hardewig I; Van Dijk PL; Portner HO
    Am J Physiol; 1998 Jun; 274(6):R1789-96. PubMed ID: 9841552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment.
    Shin SC; Ahn DH; Kim SJ; Pyo CW; Lee H; Kim MK; Lee J; Lee JE; Detrich HW; Postlethwait JH; Edwards D; Lee SG; Lee JH; Park H
    Genome Biol; 2014 Sep; 15(9):468. PubMed ID: 25252967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversification, evolution and sub-functionalization of 70kDa heat-shock proteins in two sister species of antarctic krill: differences in thermal habitats, responses and implications under climate change.
    Cascella K; Jollivet D; Papot C; Léger N; Corre E; Ravaux J; Clark MS; Toullec JY
    PLoS One; 2015; 10(4):e0121642. PubMed ID: 25835552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution in chronic cold: varied loss of cellular response to heat in Antarctic notothenioid fish.
    Bilyk KT; Vargas-Chacoff L; Cheng CC
    BMC Evol Biol; 2018 Sep; 18(1):143. PubMed ID: 30231868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gene family-based method for interspecies comparisons of sequencing-based transcriptomes and its use in environmental adaptation analysis.
    Chen Z; Ye H; Zhou L; Cheng CH; Chen L
    J Genet Genomics; 2010 Mar; 37(3):205-18. PubMed ID: 20347830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.