These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23052093)

  • 1. Weighted Fried reconstructor and spatial-frequency response optimization of Shack-Hartmann wavefront sensing.
    Li T; Gong M; Huang L; Qiu Y; Xue Q
    Appl Opt; 2012 Oct; 51(29):7115-23. PubMed ID: 23052093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band-limited wavefront reconstruction with unity frequency response from Shack-Hartmann slopes measurements.
    Bahk SW
    Opt Lett; 2008 Jun; 33(12):1321-3. PubMed ID: 18552945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cumulative Reconstructor: fast wavefront reconstruction algorithm for Extremely Large Telescopes.
    Rosensteiner M
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2132-8. PubMed ID: 21979519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly accurate wavefront reconstruction algorithms over broad spatial-frequency bandwidth.
    Bahk SW
    Opt Express; 2011 Sep; 19(20):18997-9014. PubMed ID: 21996841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensity-enhanced deep network wavefront reconstruction in Shack-Hartmann sensors.
    DuBose TB; Gardner DF; Watnik AT
    Opt Lett; 2020 Apr; 45(7):1699-1702. PubMed ID: 32235977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor.
    Shatokhina I; Obereder A; Rosensteiner M; Ramlau R
    Appl Opt; 2013 Apr; 52(12):2640-52. PubMed ID: 23669672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering.
    Wang S; Yang P; Xu B; Dong L; Ao M
    Opt Express; 2015 Feb; 23(4):5052-64. PubMed ID: 25836540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes.
    Clare RM; Le Louarn M; Béchet C
    Appl Opt; 2011 Feb; 50(4):473-83. PubMed ID: 21283238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes.
    Gilles L; Ellerbroek BL
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A76-83. PubMed ID: 21045893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.
    Steinbock MJ; Hyde MW; Schmidt JD
    Appl Opt; 2014 Jun; 53(18):3821-31. PubMed ID: 24979411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.
    Plantet C; Meimon S; Conan JM; Fusco T
    Opt Express; 2015 Nov; 23(22):28619-33. PubMed ID: 26561131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.
    Robert C; Michau V; Fleury B; Magli S; Vial L
    Opt Express; 2012 Jul; 20(14):15636-53. PubMed ID: 22772257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A frequency-response-optimized Shack-Hartmann zonal wavefront reconstructor based on Fan's model.
    Fan Y; Duan Y; Da Z; Yue Y
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38739427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of scanning strategy of digital Shack-Hartmann wavefront sensing.
    Guo W; Zhao L; Li X; Chen IM
    Appl Opt; 2012 Jan; 51(1):121-5. PubMed ID: 22270420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tomographic wavefront error using multi-LGS constellation sensed with Shack-Hartmann wavefront sensors.
    Robert C; Conan JM; Gratadour D; Schreiber L; Fusco T
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A201-15. PubMed ID: 21045881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.
    Baranec C; Dekany R
    Appl Opt; 2008 Oct; 47(28):5155-62. PubMed ID: 18830305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algorithm based on the optimal block zonal strategy for fast wavefront reconstruction.
    Ji Z; Zhang X; Zheng Z; Li Y; Chang J
    Appl Opt; 2020 Feb; 59(5):1383-1396. PubMed ID: 32225393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hartmann-Shack wavefront sensing for nonlinear materials characterization.
    Rativa D; de Araujo RE; Gomes AS; Vohnsen B
    Opt Express; 2009 Nov; 17(24):22047-53. PubMed ID: 19997450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance comparison between Shack-Hartmann and astigmatic hybrid wavefront sensors.
    Barwick S
    Appl Opt; 2009 Dec; 48(36):6967-72. PubMed ID: 20029599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of phase singularities with a Shack-Hartmann wavefront sensor.
    Chen M; Roux FS; Olivier JC
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):1994-2002. PubMed ID: 17728823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.