These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23052093)

  • 21. Wavefront reconstruction for extremely large telescopes via CuRe with domain decomposition.
    Rosensteiner M
    J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2328-36. PubMed ID: 23201793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wavefront reconstruction in adaptive optics systems using nonlinear multivariate splines.
    de Visser CC; Verhaegen M
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jan; 30(1):82-95. PubMed ID: 23456004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iterative wavefront reconstruction for strong turbulence using Shack-Hartmann wavefront sensor measurements.
    Kim JJ; Fernandez B; Agrawal B
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):456-464. PubMed ID: 33690478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of CMOS Pixel and Electronic Circuitry in the Performance of a Hartmann-Shack Wavefront Sensor.
    Abecassis ÚV; de Lima Monteiro DW; Salles LP; de Moraes Cruz CA; Agra Belmonte PN
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reference-free Shack-Hartmann wavefront sensor.
    Zhao L; Guo W; Li X; Chen IM
    Opt Lett; 2011 Aug; 36(15):2752-4. PubMed ID: 21808301
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monitoring the statistics of turbulence: Fried parameter estimation from the wavefront sensor measurements.
    Sergeyev AV; Roggemann MC
    Appl Opt; 2011 Jul; 50(20):3519-28. PubMed ID: 21743562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal reconstruction for closed-loop ground-layer adaptive optics with elongated spots.
    Béchet C; Tallon M; Tallon-Bosc I; Thiébaut É; Le Louarn M; Clare RM
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A1-8. PubMed ID: 21045872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Algorithm and experiment of whole-aperture wavefront reconstruction from annular subaperture Hartmann-Shack gradient data.
    Xu H; Xian H; Zhang Y
    Opt Express; 2010 Jun; 18(13):13431-43. PubMed ID: 20588474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform.
    Poyneer LA; Gavel DT; Brase JM
    J Opt Soc Am A Opt Image Sci Vis; 2002 Oct; 19(10):2100-11. PubMed ID: 12365629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced-resolution Shack-Hartmann wavefront sensing for extended objects.
    Wu X; Huang L; Gu N
    Opt Lett; 2023 Nov; 48(21):5691-5694. PubMed ID: 37910735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution retinal imaging with micro adaptive optics system.
    Niu S; Shen J; Liang C; Zhang Y; Li B
    Appl Opt; 2011 Aug; 50(22):4365-75. PubMed ID: 21833112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shack-Hartmann wavefront sensing using spatial-temporal data from an event-based image sensor.
    Kong F; Lambert A; Joubert D; Cohen G
    Opt Express; 2020 Nov; 28(24):36159-36175. PubMed ID: 33379717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tolerance analysis method for Shack-Hartmann sensors using a variable phase surface.
    Curatu C; Curatu G; Rolland J
    Opt Express; 2006 Jan; 14(1):138-47. PubMed ID: 19503325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High precision wavefront correction using an influence function optimization method based on a hybrid adaptive optics system.
    Zheng Y; Sun C; Dai W; Zeng F; Xue Q; Wang D; Zhao W; Huang L
    Opt Express; 2019 Nov; 27(24):34937-34951. PubMed ID: 31878672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase unwrapping with a virtual Hartmann-Shack wavefront sensor.
    Akondi V; Falldorf C; Marcos S; Vohnsen B
    Opt Express; 2015 Oct; 23(20):25425-39. PubMed ID: 26480061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shack-Hartmann mask/pupil registration algorithm for wavefront sensing in segmented mirror telescopes.
    Piatrou P; Chanan G
    Appl Opt; 2013 Nov; 52(32):7778-84. PubMed ID: 24216737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE).
    Pilar J; Slezak O; Sikocinski P; Divoky M; Sawicka M; Bonora S; Lucianetti A; Mocek T; Jelinkova H
    Appl Opt; 2014 May; 53(15):3255-61. PubMed ID: 24922211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.
    Gousset S; Petit C; Michau V; Fusco T; Robert C
    Appl Opt; 2015 Dec; 54(34):10163-76. PubMed ID: 26836674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential focal anisoplanatism in laser guide star wavefront sensing on extremely large telescopes.
    Muller N; Michau V; Robert C; Rousset G
    Opt Lett; 2011 Oct; 36(20):4071-3. PubMed ID: 22002389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.