These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 23052212)
1. A SAXS-based ensemble model of the native and phosphorylated regulatory domain of the CFTR. Marasini C; Galeno L; Moran O Cell Mol Life Sci; 2013 Mar; 70(5):923-33. PubMed ID: 23052212 [TBL] [Abstract][Full Text] [Related]
2. On the structural organization of the intracellular domains of CFTR. Moran O Int J Biochem Cell Biol; 2014 Jul; 52():7-14. PubMed ID: 24513531 [TBL] [Abstract][Full Text] [Related]
3. Functional and pharmacological induced structural changes of the cystic fibrosis transmembrane conductance regulator in the membrane solved using SAXS. Baroni D; Zegarra-Moran O; Moran O Cell Mol Life Sci; 2015 Apr; 72(7):1363-75. PubMed ID: 25274064 [TBL] [Abstract][Full Text] [Related]
4. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR. Marasini C; Galeno L; Moran O Biochem Biophys Res Commun; 2012 Jul; 423(3):549-52. PubMed ID: 22683332 [TBL] [Abstract][Full Text] [Related]
5. Structure of wild type and mutant F508del CFTR: A small-angle X-ray scattering study of the protein-detergent complexes. Pollock NL; Satriano L; Zegarra-Moran O; Ford RC; Moran O J Struct Biol; 2016 Apr; 194(1):102-11. PubMed ID: 26850167 [TBL] [Abstract][Full Text] [Related]
6. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C. Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895 [TBL] [Abstract][Full Text] [Related]
7. Computational studies reveal phosphorylation-dependent changes in the unstructured R domain of CFTR. Hegedus T; Serohijos AW; Dokholyan NV; He L; Riordan JR J Mol Biol; 2008 May; 378(5):1052-63. PubMed ID: 18423665 [TBL] [Abstract][Full Text] [Related]
8. Severed channels probe regulation of gating of cystic fibrosis transmembrane conductance regulator by its cytoplasmic domains. Csanády L; Chan KW; Seto-Young D; Kopsco DC; Nairn AC; Gadsby DC J Gen Physiol; 2000 Sep; 116(3):477-500. PubMed ID: 10962022 [TBL] [Abstract][Full Text] [Related]
9. The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation. Pasyk S; Molinski S; Ahmadi S; Ramjeesingh M; Huan LJ; Chin S; Du K; Yeger H; Taylor P; Moran MF; Bear CE Proteomics; 2015 Jan; 15(2-3):447-61. PubMed ID: 25330774 [TBL] [Abstract][Full Text] [Related]
10. The gating of the CFTR channel. Moran O Cell Mol Life Sci; 2017 Jan; 74(1):85-92. PubMed ID: 27696113 [TBL] [Abstract][Full Text] [Related]
12. Molecular structure of the ATP-bound, phosphorylated human CFTR. Zhang Z; Liu F; Chen J Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12757-12762. PubMed ID: 30459277 [TBL] [Abstract][Full Text] [Related]
13. Small-angle X-ray scattering study of the ATP modulation of the structural features of the nucleotide binding domains of the CFTR in solution. Galeno L; Galfrè E; Moran O Eur Biophys J; 2011 Jul; 40(7):811-24. PubMed ID: 21424674 [TBL] [Abstract][Full Text] [Related]
14. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
15. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps. Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383 [TBL] [Abstract][Full Text] [Related]
16. Restoration of NBD1 thermal stability is necessary and sufficient to correct ∆F508 CFTR folding and assembly. He L; Aleksandrov AA; An J; Cui L; Yang Z; Brouillette CG; Riordan JR J Mol Biol; 2015 Jan; 427(1):106-20. PubMed ID: 25083918 [TBL] [Abstract][Full Text] [Related]
17. CFTR structure and cystic fibrosis. Cant N; Pollock N; Ford RC Int J Biochem Cell Biol; 2014 Jul; 52():15-25. PubMed ID: 24534272 [TBL] [Abstract][Full Text] [Related]
18. Domain-domain associations in cystic fibrosis transmembrane conductance regulator. Wang W; He Z; O'Shaughnessy TJ; Rux J; Reenstra WW Am J Physiol Cell Physiol; 2002 May; 282(5):C1170-80. PubMed ID: 11940532 [TBL] [Abstract][Full Text] [Related]
19. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. Chen JH J Biol Chem; 2020 Apr; 295(14):4577-4590. PubMed ID: 32102849 [TBL] [Abstract][Full Text] [Related]
20. Identification of protein kinase A phosphorylation sites on NBD1 and R domains of CFTR using electrospray mass spectrometry with selective phosphate ion monitoring. Townsend RR; Lipniunas PH; Tulk BM; Verkman AS Protein Sci; 1996 Sep; 5(9):1865-73. PubMed ID: 8880910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]