These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 23052419)
1. Large scale expressed sequence tag (EST) analysis of Metarhizium acridum infecting Locusta migratoria reveals multiple strategies for fungal adaptation to the host cuticle. He M; Hu J; Xia Y Curr Genet; 2012 Dec; 58(5-6):265-79. PubMed ID: 23052419 [TBL] [Abstract][Full Text] [Related]
2. Identification of genes differentially expressed in vivo by Metarhizium anisopliae in the hemolymph of Locusta migratoria using suppression-subtractive hybridization. Zhang C; Xia Y Curr Genet; 2009 Aug; 55(4):399-407. PubMed ID: 19506875 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342 [TBL] [Abstract][Full Text] [Related]
4. Construction and analysis of a normalized cDNA library from Metarhizium anisopliae var. acridum germinating and differentiating on Locusta migratoria wings. He M; Xia Y FEMS Microbiol Lett; 2009 Feb; 291(1):127-35. PubMed ID: 19076228 [TBL] [Abstract][Full Text] [Related]
5. Expression of scorpion toxin LqhIT2 increases the virulence of Metarhizium acridum towards Locusta migratoria manilensis. Peng G; Xia Y J Ind Microbiol Biotechnol; 2014 Nov; 41(11):1659-66. PubMed ID: 25168679 [TBL] [Abstract][Full Text] [Related]
6. Identification of genes differentially expressed by Metarhizium anisopliae growing on Locusta migratoria wings using suppression subtractive hybridization. Zhang C; Xia Y; Li Z Curr Microbiol; 2011 May; 62(5):1649-55. PubMed ID: 21380718 [TBL] [Abstract][Full Text] [Related]
7. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F Hu J; Xia Y Pest Manag Sci; 2019 Jan; 75(1):180-186. PubMed ID: 29797423 [TBL] [Abstract][Full Text] [Related]
8. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Jin K; Peng G; Liu Y; Xia Y Fungal Genet Biol; 2015 Apr; 77():61-7. PubMed ID: 25865794 [TBL] [Abstract][Full Text] [Related]
9. MaMk1, a FUS3/KSS1-type mitogen-activated protein kinase gene, is required for appressorium formation, and insect cuticle penetration of the entomopathogenic fungus Metarhizium acridum. Jin K; Han L; Xia Y J Invertebr Pathol; 2014 Jan; 115():68-75. PubMed ID: 24184951 [TBL] [Abstract][Full Text] [Related]
10. Disruption of an adenylate-forming reductase required for conidiation, increases virulence of the insect pathogenic fungus Metarhizium acridum by enhancing cuticle invasion. Guo H; Wang H; Keyhani NO; Xia Y; Peng G Pest Manag Sci; 2020 Feb; 76(2):758-768. PubMed ID: 31392798 [TBL] [Abstract][Full Text] [Related]
11. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Peng G; Xia Y Pest Manag Sci; 2015 Jan; 71(1):58-64. PubMed ID: 25488590 [TBL] [Abstract][Full Text] [Related]
12. Construction and preliminary analysis of a normalized cDNA library from Locusta migratoria manilensis topically infected with Metarhizium anisopliae var. acridum. Wang J; Xia Y J Insect Physiol; 2010 Aug; 56(8):998-1002. PubMed ID: 20470782 [TBL] [Abstract][Full Text] [Related]
13. Mapmi gene contributes to stress tolerance and virulence of the entomopathogenic fungus, Metarhizium acridum. Cao Y; Li M; Xia Y J Invertebr Pathol; 2011 Sep; 108(1):7-12. PubMed ID: 21683706 [TBL] [Abstract][Full Text] [Related]
14. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. Wei Q; Du Y; Jin K; Xia Y Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8571-8584. PubMed ID: 29079863 [TBL] [Abstract][Full Text] [Related]
15. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. Gao Q; Jin K; Ying SH; Zhang Y; Xiao G; Shang Y; Duan Z; Hu X; Xie XQ; Zhou G; Peng G; Luo Z; Huang W; Wang B; Fang W; Wang S; Zhong Y; Ma LJ; St Leger RJ; Zhao GP; Pei Y; Feng MG; Xia Y; Wang C PLoS Genet; 2011 Jan; 7(1):e1001264. PubMed ID: 21253567 [TBL] [Abstract][Full Text] [Related]
16. The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. Luo S; He M; Cao Y; Xia Y Environ Microbiol; 2013 Nov; 15(11):2966-79. PubMed ID: 23809263 [TBL] [Abstract][Full Text] [Related]
17. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust. Jiang ZY; Ligoxygakis P; Xia YX Int J Biol Macromol; 2020 Dec; 165(Pt A):1303-1311. PubMed ID: 33022346 [TBL] [Abstract][Full Text] [Related]
18. MaPacC, a pH-responsive transcription factor, negatively regulates thermotolerance and contributes to conidiation and virulence in Metarhizium acridum. Zhang M; Wei Q; Xia Y; Jin K Curr Genet; 2020 Apr; 66(2):397-408. PubMed ID: 31471639 [TBL] [Abstract][Full Text] [Related]
19. MaAzaR Influences Virulence of Hong G; Wang S; Xia Y; Peng G J Fungi (Basel); 2024 Aug; 10(8):. PubMed ID: 39194890 [TBL] [Abstract][Full Text] [Related]
20. Differential responses of the antennal proteome of male and female migratory locusts to infection by a fungal pathogen. Zheng R; Xia Y; Keyhani NO J Proteomics; 2021 Feb; 232():104050. PubMed ID: 33217581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]