BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23052581)

  • 1. Effects of artemisinin on photosystem II performance of Microcystis aeruginosa by in vivo chlorophyll fluorescence.
    Ni L; Acharya K; Hao X; Li S; Li Y; Li Y
    Bull Environ Contam Toxicol; 2012 Dec; 89(6):1165-9. PubMed ID: 23052581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early stage toxicity of excess copper to photosystem II of Chlorella pyrenoidosa-OJIP chlorophyll a fluorescence analysis.
    Xia J; Tian Q
    J Environ Sci (China); 2009; 21(11):1569-74. PubMed ID: 20108692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light modulates the effect of antibiotic norfloxacin on photosynthetic processes of Microcystis aeruginosa.
    Zhao L; Xu K; Juneau P; Huang P; Lian Y; Zheng X; Zhong Q; Zhang W; Xiao F; Wu B; Yan Q; He Z
    Aquat Toxicol; 2021 Jun; 235():105826. PubMed ID: 33862333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis.
    Zhang T; Gong H; Wen X; Lu C
    J Plant Physiol; 2010 Aug; 167(12):951-8. PubMed ID: 20417984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Sb(V) on growth and chlorophyll fluorescence of Microcystis aeruginosa (FACHB-905).
    Wang S; Pan X
    Curr Microbiol; 2012 Dec; 65(6):733-41. PubMed ID: 22968687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated air temperature damage to photosynthetic apparatus alleviated by enhanced cyclic electron flow around photosystem I in tobacco leaves.
    Yanhui C; Hongrui W; Beining Z; Shixing G; Zihan W; Yue W; Huihui Z; Guangyu S
    Ecotoxicol Environ Saf; 2020 Nov; 204():111136. PubMed ID: 32798755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinic acid inhibits photosynthesis of Microcystis aeruginosa via damaging PSII oxygen-evolving complex and reaction center.
    Chen YD; Zhu Y; Xin JP; Zhao C; Tian RN
    Environ Sci Pollut Res Int; 2021 Nov; 28(41):58470-58479. PubMed ID: 34114144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating the toxicity targets of β-ionone on photosynthetic system of Microcystis aeruginosa NIES-843 (Cyanobacteria).
    Shao J; Xu Y; Wang Z; Jiang Y; Yu G; Peng X; Li R
    Aquat Toxicol; 2011 Jul; 104(1-2):48-55. PubMed ID: 21543049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of ofloxacin on photosystems I and II activities of Microcystis aeruginosa and the potential role of cyclic electron flow.
    Deng C; Pan X; Zhang D
    J Biosci Bioeng; 2015 Feb; 119(2):159-64. PubMed ID: 25209631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of modified clay on the physiological and photosynthetic activities of Amphidinium carterae Hulburt.
    Liu S; Yu Z; Song X; Cao X
    Harmful Algae; 2017 Dec; 70():64-72. PubMed ID: 29169569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alleviation of heat damage to photosystem II by nitric oxide in tall fescue.
    Chen K; Chen L; Fan J; Fu J
    Photosynth Res; 2013 Sep; 116(1):21-31. PubMed ID: 23832593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements.
    Appenroth KJ; Stöckel J; Srivastava A; Strasser RJ
    Environ Pollut; 2001; 115(1):49-64. PubMed ID: 11586773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic selectivity on depressing photosynthesis of cyanobacteria and green algae probed by chlorophyll-a fluorescence transient.
    Duan Z; Tan X; Li N
    Water Sci Technol; 2017 Oct; 76(7-8):2085-2094. PubMed ID: 29068338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and photosynthetic responses of the bloom-forming cyanobacterium Microcystis aeruginosa to elevated levels of cadmium.
    Zhou W; Juneau P; Qiu B
    Chemosphere; 2006 Dec; 65(10):1738-46. PubMed ID: 16777178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preservation of photosynthetic electron transport from senescence-induced inactivation in primary leaves after decapitation and defoliation of bean plants.
    Yordanov I; Goltsev V; Stefanov D; Chernev P; Zaharieva I; Kirova M; Gecheva V; Strasser RJ
    J Plant Physiol; 2008 Dec; 165(18):1954-63. PubMed ID: 18586352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of biofertilizers on the growth, leaf physiological indices and chlorophyll fluorescence response of spinach seedlings.
    Zhang B; Zhang H; Lu D; Cheng L; Li J
    PLoS One; 2023; 18(12):e0294349. PubMed ID: 38096260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa.
    Wang S; Xu Z
    PLoS One; 2016; 11(10):e0164842. PubMed ID: 27755566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek].
    Bano H; Athar HU; Zafar ZU; Kalaji HM; Ashraf M
    Physiol Plant; 2021 Jun; 172(2):1244-1254. PubMed ID: 33421155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.
    Tang L; Ying RR; Jiang D; Zeng XW; Morel JL; Tang YT; Qiu RL
    Plant Physiol Biochem; 2013 Dec; 73():70-6. PubMed ID: 24077231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves].
    Li XX; Liu BX; Guo ZT; Chang YX; He L; Chen F; Lu BS
    Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2479-84. PubMed ID: 24417104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.