These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23053065)

  • 21. Winter warming offsets one half of the spring warming effects on leaf unfolding.
    Wang H; Dai J; Peñuelas J; Ge Q; Fu YH; Wu C
    Glob Chang Biol; 2022 Oct; 28(20):6033-6049. PubMed ID: 35899626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.
    Primack RB; Laube J; Gallinat AS; Menzel A
    Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Models of the spring phenology of boreal and temperate trees: Is there something missing?
    Linkosalo T; Häkkinen R; Hänninen H
    Tree Physiol; 2006 Sep; 26(9):1165-72. PubMed ID: 16740492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An approach to the determination of winter chill requirements for different Ribes cultivars.
    Jones HG; Hillis RM; Gordon SL; Brennan RM
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():18-27. PubMed ID: 22512943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica).
    Fan S; Bielenberg DG; Zhebentyayeva TN; Reighard GL; Okie WR; Holland D; Abbott AG
    New Phytol; 2010 Mar; 185(4):917-30. PubMed ID: 20028471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Risk of spring frost to apple production under future climate scenarios: the role of phenological acclimation.
    Eccel E; Rea R; Caffarra A; Crisci A
    Int J Biometeorol; 2009 May; 53(3):273-86. PubMed ID: 19263089
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Models for the beginning of sour cherry blossom.
    Matzneller P; Blümel K; Chmielewski FM
    Int J Biometeorol; 2014 Jul; 58(5):703-15. PubMed ID: 23456375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic Dissection of Bloom Time in Low Chilling Sweet Cherry (
    Calle A; Cai L; Iezzoni A; Wünsch A
    Front Plant Sci; 2019; 10():1647. PubMed ID: 31998337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ABA and Not Chilling Reduces Heat Requirement to Force Cherry Blossom after Endodormancy Release.
    Chmielewski FM; Götz KP
    Plants (Basel); 2022 Aug; 11(15):. PubMed ID: 35956522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of Climate Change Impacts on Chilling and Forcing for the Main Fresh Fruit Regions in Portugal.
    Fraga H; Santos JA
    Front Plant Sci; 2021; 12():689121. PubMed ID: 34249059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control?
    Charrier G; Bonhomme M; Lacointe A; Améglio T
    Int J Biometeorol; 2011 Nov; 55(6):763-74. PubMed ID: 21805380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in carbohydrate levels and relative water content (RWC) to distinguish dormancy phases in sweet cherry.
    Kaufmann H; Blanke M
    J Plant Physiol; 2017 Nov; 218():1-5. PubMed ID: 28759789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of winter and spring temperatures on temperate tree budburst dates: results from an experimental climate manipulation.
    Fu YH; Campioli M; Deckmyn G; Janssens IA
    PLoS One; 2012; 7(10):e47324. PubMed ID: 23071786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology.
    Allen JM; Terres MA; Katsuki T; Iwamoto K; Kobori H; Higuchi H; Primack RB; Wilson AM; Gelfand A; Silander JA
    Glob Chang Biol; 2014 Apr; 20(4):1251-63. PubMed ID: 23966290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dormancy-Associated MADS-Box (
    Wang J; Gao Z; Li H; Jiu S; Qu Y; Wang L; Ma C; Xu W; Wang S; Zhang C
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32019252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Climatic suitability projection for deciduous fruit tree cultivation in main producing regions of northern China under climate warming.
    Sun W; Gao Y; Ren R; Wang J; Wang L; Liu X; Liu Y; Jiu S; Wang S; Zhang C
    Int J Biometeorol; 2022 Oct; 66(10):1997-2008. PubMed ID: 35902391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying the importance of day length in process-based models for the prediction of temperate spring flowering phenology.
    Kim S; Kim TK; Yoon S; Jang K; Chun JH; Won M; Lim JH; Kim HS
    Sci Total Environ; 2022 Oct; 843():156780. PubMed ID: 35724787
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chilled to be forced: the best dose to wake up buds from winter dormancy.
    Baumgarten F; Zohner CM; Gessler A; Vitasse Y
    New Phytol; 2021 May; 230(4):1366-1377. PubMed ID: 33577087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differentiated Responses of Apple Tree Floral Phenology to Global Warming in Contrasting Climatic Regions.
    Legave JM; Guédon Y; Malagi G; El Yaacoubi A; Bonhomme M
    Front Plant Sci; 2015; 6():1054. PubMed ID: 26697028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements.
    Castède S; Campoy JA; García JQ; Le Dantec L; Lafargue M; Barreneche T; Wenden B; Dirlewanger E
    New Phytol; 2014 Apr; 202(2):703-715. PubMed ID: 24417538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.