These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 23053072)
1. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae. Kim IS; Kim YS; Yoon HS Appl Microbiol Biotechnol; 2013 Apr; 97(8):3519-33. PubMed ID: 23053072 [TBL] [Abstract][Full Text] [Related]
2. Expression of dehydrin gene from Arctic Cerastium arcticum increases abiotic stress tolerance and enhances the fermentation capacity of a genetically engineered Saccharomyces cerevisiae laboratory strain. Kim IS; Kim HY; Kim YS; Choi HG; Kang SH; Yoon HS Appl Microbiol Biotechnol; 2013 Oct; 97(20):8997-9009. PubMed ID: 23377791 [TBL] [Abstract][Full Text] [Related]
3. Potential Application of the Oryza sativa Monodehydroascorbate Reductase Gene (OsMDHAR) to Improve the Stress Tolerance and Fermentative Capacity of Saccharomyces cerevisiae. Kim IS; Kim YS; Kim YH; Park AK; Kim HW; Lee JH; Yoon HS PLoS One; 2016; 11(7):e0158841. PubMed ID: 27392090 [TBL] [Abstract][Full Text] [Related]
4. Expression of Kim YS; Kim JJ; Park SI; Diamond S; Boyd JS; Taton A; Kim IS; Golden JW; Yoon HS Front Plant Sci; 2018; 9():1848. PubMed ID: 30619416 [TBL] [Abstract][Full Text] [Related]
5. Glutathione reductase from Brassica rapa affects tolerance and the redox state but not fermentation ability in response to oxidative stress in genetically modified Saccharomyces cerevisiae. Yoon HS; Shin SY; Kim YS; Kim IS World J Microbiol Biotechnol; 2012 May; 28(5):1901-15. PubMed ID: 22806013 [TBL] [Abstract][Full Text] [Related]
6. Glutathione reductase from Oryza sativa increases acquired tolerance to abiotic stresses in a genetically modified Saccharomyces cerevisiae strain. Kim IS; Kim YS; Yoon HS J Microbiol Biotechnol; 2012 Nov; 22(11):1557-67. PubMed ID: 23124348 [TBL] [Abstract][Full Text] [Related]
7. Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance. Banerjee M; Chakravarty D; Ballal A BMC Plant Biol; 2015 Feb; 15():60. PubMed ID: 25849452 [TBL] [Abstract][Full Text] [Related]
8. Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase. Lee SM; Park JW Arch Biochem Biophys; 1998 Nov; 359(1):99-106. PubMed ID: 9799566 [TBL] [Abstract][Full Text] [Related]
9. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Moraitis C; Curran BP Yeast; 2004 Mar; 21(4):313-23. PubMed ID: 15042591 [TBL] [Abstract][Full Text] [Related]
10. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Sasano Y; Takahashi S; Shima J; Takagi H Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471 [TBL] [Abstract][Full Text] [Related]
11. Site-specific mutagenesis of yeast 2-Cys peroxiredoxin improves heat or oxidative stress tolerance by enhancing its chaperone or peroxidase function. Hong SH; Lee SS; Chung JM; Jung HS; Singh S; Mondal S; Jang HH; Cho JY; Bae HJ; Chung BY Protoplasma; 2017 Jan; 254(1):327-334. PubMed ID: 26843371 [TBL] [Abstract][Full Text] [Related]
12. Rice ASR1 protein with reactive oxygen species scavenging and chaperone-like activities enhances acquired tolerance to abiotic stresses in Saccharomyces cerevisiae. Kim IS; Kim YS; Yoon HS Mol Cells; 2012 Mar; 33(3):285-93. PubMed ID: 22382682 [TBL] [Abstract][Full Text] [Related]
13. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Du X; Takagi H Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467 [TBL] [Abstract][Full Text] [Related]
14. Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris alleviates environmental stresses in yeast together with 2-Cys peroxiredoxin. Machida T; Ishibashi A; Kirino A; Sato J; Kawasaki S; Niimura Y; Honjoh K; Miyamoto T PLoS One; 2012; 7(9):e45988. PubMed ID: 23029353 [TBL] [Abstract][Full Text] [Related]
15. Ectopic expression of sweet potato MuS1 increases acquired stress tolerance and fermentation yield in Saccharomyces cerevisiae. Kim IS; Shin SY; Kim SH; Yoon HS J Microbiol; 2012 Jun; 50(3):544-6. PubMed ID: 22752921 [TBL] [Abstract][Full Text] [Related]
16. Functional analysis and expression characteristics of chloroplastic Prx IIE. Gama F; Bréhélin C; Gelhaye E; Meyer Y; Jacquot JP; Rey P; Rouhier N Physiol Plant; 2008 Jul; 133(3):599-610. PubMed ID: 18422870 [TBL] [Abstract][Full Text] [Related]
17. Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state. Demasi AP; Pereira GA; Netto LE FEBS J; 2006 Feb; 273(4):805-16. PubMed ID: 16441666 [TBL] [Abstract][Full Text] [Related]
18. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [TBL] [Abstract][Full Text] [Related]
19. Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance. Ansarypour Z; Shahpiri A Braz J Microbiol; 2017; 48(3):537-543. PubMed ID: 28223030 [TBL] [Abstract][Full Text] [Related]
20. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress. Kim IS; Yun HS; Park IS; Sohn HY; Iwahashi H; Jin IN J Biosci Bioeng; 2006 Oct; 102(4):288-96. PubMed ID: 17116574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]