BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 23053072)

  • 1. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.
    Kim IS; Kim YS; Yoon HS
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3519-33. PubMed ID: 23053072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of dehydrin gene from Arctic Cerastium arcticum increases abiotic stress tolerance and enhances the fermentation capacity of a genetically engineered Saccharomyces cerevisiae laboratory strain.
    Kim IS; Kim HY; Kim YS; Choi HG; Kang SH; Yoon HS
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8997-9009. PubMed ID: 23377791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential Application of the Oryza sativa Monodehydroascorbate Reductase Gene (OsMDHAR) to Improve the Stress Tolerance and Fermentative Capacity of Saccharomyces cerevisiae.
    Kim IS; Kim YS; Kim YH; Park AK; Kim HW; Lee JH; Yoon HS
    PLoS One; 2016; 11(7):e0158841. PubMed ID: 27392090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of
    Kim YS; Kim JJ; Park SI; Diamond S; Boyd JS; Taton A; Kim IS; Golden JW; Yoon HS
    Front Plant Sci; 2018; 9():1848. PubMed ID: 30619416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione reductase from Brassica rapa affects tolerance and the redox state but not fermentation ability in response to oxidative stress in genetically modified Saccharomyces cerevisiae.
    Yoon HS; Shin SY; Kim YS; Kim IS
    World J Microbiol Biotechnol; 2012 May; 28(5):1901-15. PubMed ID: 22806013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione reductase from Oryza sativa increases acquired tolerance to abiotic stresses in a genetically modified Saccharomyces cerevisiae strain.
    Kim IS; Kim YS; Yoon HS
    J Microbiol Biotechnol; 2012 Nov; 22(11):1557-67. PubMed ID: 23124348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-dependent chaperone/peroxidase function of 2-Cys-Prx from the cyanobacterium Anabaena PCC7120: role in oxidative stress tolerance.
    Banerjee M; Chakravarty D; Ballal A
    BMC Plant Biol; 2015 Feb; 15():60. PubMed ID: 25849452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermosensitive phenotype of yeast mutant lacking thioredoxin peroxidase.
    Lee SM; Park JW
    Arch Biochem Biophys; 1998 Nov; 359(1):99-106. PubMed ID: 9799566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae.
    Moraitis C; Curran BP
    Yeast; 2004 Mar; 21(4):313-23. PubMed ID: 15042591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.
    Sasano Y; Takahashi S; Shima J; Takagi H
    Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific mutagenesis of yeast 2-Cys peroxiredoxin improves heat or oxidative stress tolerance by enhancing its chaperone or peroxidase function.
    Hong SH; Lee SS; Chung JM; Jung HS; Singh S; Mondal S; Jang HH; Cho JY; Bae HJ; Chung BY
    Protoplasma; 2017 Jan; 254(1):327-334. PubMed ID: 26843371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice ASR1 protein with reactive oxygen species scavenging and chaperone-like activities enhances acquired tolerance to abiotic stresses in Saccharomyces cerevisiae.
    Kim IS; Kim YS; Yoon HS
    Mol Cells; 2012 Mar; 33(3):285-93. PubMed ID: 22382682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species.
    Du X; Takagi H
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1343-51. PubMed ID: 17387467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloroplast NADPH-dependent thioredoxin reductase from Chlorella vulgaris alleviates environmental stresses in yeast together with 2-Cys peroxiredoxin.
    Machida T; Ishibashi A; Kirino A; Sato J; Kawasaki S; Niimura Y; Honjoh K; Miyamoto T
    PLoS One; 2012; 7(9):e45988. PubMed ID: 23029353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ectopic expression of sweet potato MuS1 increases acquired stress tolerance and fermentation yield in Saccharomyces cerevisiae.
    Kim IS; Shin SY; Kim SH; Yoon HS
    J Microbiol; 2012 Jun; 50(3):544-6. PubMed ID: 22752921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis and expression characteristics of chloroplastic Prx IIE.
    Gama F; Bréhélin C; Gelhaye E; Meyer Y; Jacquot JP; Rey P; Rouhier N
    Physiol Plant; 2008 Jul; 133(3):599-610. PubMed ID: 18422870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast oxidative stress response. Influences of cytosolic thioredoxin peroxidase I and of the mitochondrial functional state.
    Demasi AP; Pereira GA; Netto LE
    FEBS J; 2006 Feb; 273(4):805-16. PubMed ID: 16441666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance.
    Ansarypour Z; Shahpiri A
    Braz J Microbiol; 2017; 48(3):537-543. PubMed ID: 28223030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A knockout strain of CPR1 induced during fermentation of Saccharomyces cerevisiae KNU5377 is susceptible to various types of stress.
    Kim IS; Yun HS; Park IS; Sohn HY; Iwahashi H; Jin IN
    J Biosci Bioeng; 2006 Oct; 102(4):288-96. PubMed ID: 17116574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.