BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23053241)

  • 21. Why is timing of bird migration advancing when individuals are not?
    Gill JA; Alves JA; Sutherland WJ; Appleton GF; Potts PM; Gunnarsson TG
    Proc Biol Sci; 2014 Jan; 281(1774):20132161. PubMed ID: 24225454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird.
    Visser ME; Gienapp P; Husby A; Morrisey M; de la Hera I; Pulido F; Both C
    PLoS Biol; 2015 Apr; 13(4):e1002120. PubMed ID: 25848856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds.
    Thomas DW; Blondel J; Perret P; Lambrechts MM; Speakman JR
    Science; 2001 Mar; 291(5513):2598-600. PubMed ID: 11283370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity.
    Franks SE; Pearce-Higgins JW; Atkinson S; Bell JR; Botham MS; Brereton TM; Harrington R; Leech DI
    Glob Chang Biol; 2018 Mar; 24(3):957-971. PubMed ID: 29152888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible seasonal timing and migratory behavior: results from stonechat breeding programs.
    Helm B; Gwinner E; Trost L
    Ann N Y Acad Sci; 2005 Jun; 1046():216-27. PubMed ID: 16055855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenotypic plasticity in response to climate change: the importance of cue variation.
    Bonamour S; Chevin LM; Charmantier A; Teplitsky C
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180178. PubMed ID: 30966957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders.
    Samplonius JM; Bartošová L; Burgess MD; Bushuev AV; Eeva T; Ivankina EV; Kerimov AB; Krams I; Laaksonen T; Mägi M; Mänd R; Potti J; Török J; Trnka M; Visser ME; Zang H; Both C
    Glob Chang Biol; 2018 Aug; 24(8):3780-3790. PubMed ID: 29691942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extreme spring conditions in the Arctic delay spring phenology of long-distance migratory songbirds.
    Boelman NT; Krause JS; Sweet SK; Chmura HE; Perez JH; Gough L; Wingfield JC
    Oecologia; 2017 Sep; 185(1):69-80. PubMed ID: 28779226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unpredictable food supply modifies costs of reproduction and hampers individual optimization.
    Török J; Hegyi G; Tóth L; Könczey R
    Oecologia; 2004 Nov; 141(3):432-43. PubMed ID: 15316767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate Change May Affect Fatal Competition between Two Bird Species.
    Samplonius JM; Both C
    Curr Biol; 2019 Jan; 29(2):327-331.e2. PubMed ID: 30639109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tritrophic phenological match-mismatch in space and time.
    Burgess MD; Smith KW; Evans KL; Leech D; Pearce-Higgins JW; Branston CJ; Briggs K; Clark JR; du Feu CR; Lewthwaite K; Nager RG; Sheldon BC; Smith JA; Whytock RC; Willis SG; Phillimore AB
    Nat Ecol Evol; 2018 Jun; 2(6):970-975. PubMed ID: 29686235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses in the breeding parameters of the collared flycatcher to the changing climate.
    Laczi M; Sarkadi F; Herényi M; Nagy G; Hegyi G; Jablonszky M; Könczey R; Krenhardt K; Markó G; Rosivall B; Szász E; Szöllősi E; Tóth L; Zsebők S; Török J
    Sci Total Environ; 2024 May; 926():171945. PubMed ID: 38531456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird.
    Studds CE; Marra PP
    Proc Biol Sci; 2011 Nov; 278(1723):3437-43. PubMed ID: 21450737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird.
    Seress G; Hammer T; Bókony V; Vincze E; Preiszner B; Pipoly I; Sinkovics C; Evans KL; Liker A
    Ecol Appl; 2018 Jul; 28(5):1143-1156. PubMed ID: 29679462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development syndromes in New World temperate and tropical songbirds.
    Austin SH; Robinson WD; Robinson TR; Ellis VA; Ricklefs RE
    PLoS One; 2020; 15(8):e0233627. PubMed ID: 32804928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The response of migratory populations to phenological change: a Migratory Flow Network modelling approach.
    Taylor CM; Laughlin AJ; Hall RJ
    J Anim Ecol; 2016 May; 85(3):648-59. PubMed ID: 26782029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Populations of migratory bird species that did not show a phenological response to climate change are declining.
    Møller AP; Rubolini D; Lehikoinen E
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16195-200. PubMed ID: 18849475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sources and timing of calcium intake during reproduction in flycatchers.
    Bures S; Weidinger K
    Oecologia; 2003 Dec; 137(4):634-41. PubMed ID: 14505029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term climate impacts on breeding bird phenology in Pennsylvania, USA.
    McDermott ME; DeGroote LW
    Glob Chang Biol; 2016 Oct; 22(10):3304-19. PubMed ID: 27195453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unravelling the processes between phenotypic plasticity and population dynamics in migratory birds.
    Liu J; Lei W; Mo X; Hassell CJ; Zhang Z; Coulson T
    J Anim Ecol; 2022 May; 91(5):983-995. PubMed ID: 35274297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.