BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23053301)

  • 1. Vascular occlusion affects gait variability patterns of healthy younger and older individuals.
    Myers SA; Johanning JM; Pipinos II; Schmid KK; Stergiou N
    Ann Biomed Eng; 2013 Aug; 41(8):1692-702. PubMed ID: 23053301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait variability is affected more by peripheral artery disease than by vascular occlusion.
    Rahman H; Pipinos II; Johanning JM; Myers SA
    PLoS One; 2021; 16(3):e0241727. PubMed ID: 33788839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait variability patterns are altered in healthy young individuals during the acute reperfusion phase of ischemia-reperfusion.
    Myers SA; Stergiou N; Pipinos II; Johanning JM
    J Surg Res; 2010 Nov; 164(1):6-12. PubMed ID: 20828731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait kinematics and kinetics are affected more by peripheral arterial disease than by age.
    Myers SA; Applequist BC; Huisinga JM; Pipinos II; Johanning JM
    J Rehabil Res Dev; 2016; 53(2):229-38. PubMed ID: 27149635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait deficiencies associated with peripheral artery disease are different than chronic obstructive pulmonary disease.
    McCamley JD; Pisciotta EJ; Yentes JM; Wurdeman SR; Rennard SI; Pipinos II; Johanning JM; Myers SA
    Gait Posture; 2017 Sep; 57():258-264. PubMed ID: 28683417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait variability is altered in patients with peripheral arterial disease.
    Myers SA; Johanning JM; Stergiou N; Celis RI; Robinson L; Pipinos II
    J Vasc Surg; 2009 Apr; 49(4):924-931.e1. PubMed ID: 19217749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging and partial body weight support affects gait variability.
    Kyvelidou A; Kurz MJ; Ehlers JL; Stergiou N
    J Neuroeng Rehabil; 2008 Sep; 5():22. PubMed ID: 18803851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central set influences on gait. Age-dependent effects of postural threat.
    Brown LA; Gage WH; Polych MA; Sleik RJ; Winder TR
    Exp Brain Res; 2002 Aug; 145(3):286-96. PubMed ID: 12136378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Walking Speed on Gait Variability in Healthy Young, Middle-aged and Elderly Individuals.
    Chien JH; Yentes J; Stergiou N; Siu KC
    J Phys Act Nutr Rehabil; 2015; 2015():. PubMed ID: 26929929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An endovascular model of ischemic myopathy from peripheral arterial disease.
    Long CA; Timmins LH; Koutakis P; Goodchild TT; Lefer DJ; Pipinos II; Casale GP; Brewster LP
    J Vasc Surg; 2017 Sep; 66(3):891-901. PubMed ID: 27693032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint torques and powers are reduced during ambulation for both limbs in patients with unilateral claudication.
    Koutakis P; Pipinos II; Myers SA; Stergiou N; Lynch TG; Johanning JM
    J Vasc Surg; 2010 Jan; 51(1):80-8. PubMed ID: 19837536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion.
    Owings TM; Grabiner MD
    J Biomech; 2004 Jun; 37(6):935-8. PubMed ID: 15111081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged stance phase during walking in intermittent claudication.
    Gommans LNM; Smid AT; Scheltinga MRM; Cancrinus E; Brooijmans FAM; Meijer K; Teijink JAW
    J Vasc Surg; 2017 Aug; 66(2):515-522. PubMed ID: 28502541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related differences in pelvic and trunk motion and gait adaptability at different walking speeds.
    Gimmon Y; Riemer R; Rashed H; Shapiro A; Debi R; Kurz I; Melzer I
    J Electromyogr Kinesiol; 2015 Oct; 25(5):791-9. PubMed ID: 26091623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age.
    Meneses AL; Nam MCY; Bailey TG; Anstey C; Golledge J; Keske MA; Greaves K; Askew CD
    Physiol Rep; 2020 Oct; 8(19):e14580. PubMed ID: 33038050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of treadmill and overground walking on preferred walking speed and gait kinematics in healthy, physically active older adults.
    Malatesta D; Canepa M; Menendez Fernandez A
    Eur J Appl Physiol; 2017 Sep; 117(9):1833-1843. PubMed ID: 28687953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of dual-tasking on temporal gait adaptation and de-adaptation to the split-belt treadmill in older adults.
    Conradsson D; Hinton DC; Paquette C
    Exp Gerontol; 2019 Oct; 125():110655. PubMed ID: 31299212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of aging and Parkinson's disease on joint coupling, symmetry, complexity and variability of lower limb movements during gait.
    Park K; Roemmich RT; Elrod JM; Hass CJ; Hsiao-Wecksler ET
    Clin Biomech (Bristol, Avon); 2016 Mar; 33():92-97. PubMed ID: 26963709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower-limb hot-water immersion acutely induces beneficial hemodynamic and cardiovascular responses in peripheral arterial disease and healthy, elderly controls.
    Thomas KN; van Rij AM; Lucas SJ; Cotter JD
    Am J Physiol Regul Integr Comp Physiol; 2017 Mar; 312(3):R281-R291. PubMed ID: 28003211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.