These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23053418)

  • 1. Continuous biohydrogen production from fruit wastewater at low pH conditions.
    Diamantis V; Khan A; Ntougias S; Stamatelatou K; Kapagiannidis AG; Aivasidis A
    Bioprocess Biosyst Eng; 2013 Jul; 36(7):965-74. PubMed ID: 23053418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Continuous operation of hydrogen bio-production reactor with ethanol-type fermentation].
    Ren NQ; Gong ML; Xing DF
    Huan Jing Ke Xue; 2004 Nov; 25(6):113-6. PubMed ID: 15759893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Start-up and continuous operation of bio-hydrogen production reactor at pH 5].
    Gong ML; Ren NQ; Tang J
    Huan Jing Ke Xue; 2005 Mar; 26(2):177-80. PubMed ID: 16004324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hydraulic retention time on suppression of methanogens during a continuous biohydrogen production process using molasses wastewater.
    Yun JH; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jan; 52(1):37-44. PubMed ID: 27610651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of pH on continuous biohydrogen production from swine wastewater supplemented with glucose.
    Li Y; Zhu J; Wu X; Miller C; Wang L
    Appl Biochem Biotechnol; 2010 Nov; 162(5):1286-96. PubMed ID: 20169419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach of modeling continuous dark hydrogen fermentation.
    Alexandropoulou M; Antonopoulou G; Lyberatos G
    Bioresour Technol; 2018 Feb; 250():784-792. PubMed ID: 29245129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Characteristics and operation of enhanced continuous bio-hydrogen production reactor using support carrier].
    Ren NQ; Tang J; Gong ML
    Huan Jing Ke Xue; 2006 Jun; 27(6):1176-80. PubMed ID: 16921957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of Biohydrogen Production and Performance of Hydrogen-Producing Acetogen by Increasing Normal Molasses Wastewater Proportion in Anaerobic Baffled Reactor.
    Gu X; Wang Y; Li H; Li J; Wang S
    Archaea; 2020; 2020():8885662. PubMed ID: 32612454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems.
    Han W; Yan Y; Shi Y; Gu J; Tang J; Zhao H
    Sci Rep; 2016 Dec; 6():38395. PubMed ID: 27910937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of key operational parameters on biohydrogen production via anaerobic fermentation in a sequencing batch reactor.
    Won SG; Lau AK
    Bioresour Technol; 2011 Jul; 102(13):6876-83. PubMed ID: 21530239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation.
    Yang K; Yu Y; Hwang S
    Water Res; 2003 May; 37(10):2467-77. PubMed ID: 12727259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fruit peel crude enzymes for enhancement of biohydrogen production from synthetic swine wastewater by improving biohydrogen-formation processes of dark fermentation.
    Feng S; Ngo HH; Guo W; Khan MA; Zhang S; Luo G; Liu Y; An D; Zhang X
    Bioresour Technol; 2023 Mar; 372():128670. PubMed ID: 36706821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unlocking the high-rate continuous performance of fermentative hydrogen bioproduction from fruit and vegetable residues by modulating hydraulic retention time.
    Martínez-Mendoza LJ; García-Depraect O; Muñoz R
    Bioresour Technol; 2023 Apr; 373():128716. PubMed ID: 36764366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors.
    Yeshanew MM; Frunzo L; Pirozzi F; Lens PNL; Esposito G
    Bioresour Technol; 2016 Nov; 220():312-322. PubMed ID: 27591517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogas production by co-digestion of municipal wastewater and food waste: Performance in semi-continuous and continuous operation.
    Ounsaneha W; Rattanapan C; Suksaroj TT; Kantachote D; Klawech W; Rakkamon T
    Water Environ Res; 2021 Feb; 93(2):306-315. PubMed ID: 33428300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time.
    Buitrón G; Carvajal C
    Bioresour Technol; 2010 Dec; 101(23):9071-7. PubMed ID: 20655747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration.
    Kongjan P; Angelidaki I
    Bioresour Technol; 2010 Oct; 101(20):7789-96. PubMed ID: 20554199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic pathways of hydrogen production in fermentative acidogenic microflora.
    Zhang L; Li J; Ban Q; He J; Jha AK
    J Microbiol Biotechnol; 2012 May; 22(5):668-73. PubMed ID: 22561862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.