These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 23053736)

  • 1. IADE: a system for intelligent automatic design of bioisosteric analogs.
    Ertl P; Lewis R
    J Comput Aided Mol Des; 2012 Nov; 26(11):1207-15. PubMed ID: 23053736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico identification of bioisosteric functional groups.
    Ertl P
    Curr Opin Drug Discov Devel; 2007 May; 10(3):281-8. PubMed ID: 17554854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Database of bioactive ring systems with calculated properties and its use in bioisosteric design and scaffold hopping.
    Ertl P
    Bioorg Med Chem; 2012 Sep; 20(18):5436-42. PubMed ID: 22436390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MB-Isoster: A software for bioisosterism simulation.
    Elias TC; de Oliveira HCB; da Silveira NJF
    J Comput Chem; 2018 Nov; 39(29):2481-2487. PubMed ID: 30318630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MolOpt: A Web Server for Drug Design using Bioisosteric Transformation.
    Shan J; Ji C
    Curr Comput Aided Drug Des; 2020; 16(4):460-466. PubMed ID: 31272357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a semi-automated workflow for fragment growing.
    Pirard B; Ertl P
    J Chem Inf Model; 2015 Jan; 55(1):180-93. PubMed ID: 25514394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-QSAR with the aid of pharmacophore search and docking-based alignments for farnesyltransferase inhibitors.
    Vaidya M; Weigt M; Wiese M
    Eur J Med Chem; 2009 Oct; 44(10):4070-82. PubMed ID: 19515462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Farnesyltransferase pharmacophore model derived from diverse classes of inhibitors.
    Lu A; Zhang J; Yin X; Luo X; Jiang H
    Bioorg Med Chem Lett; 2007 Jan; 17(1):243-9. PubMed ID: 17049856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis, and characterization of piperazinedione-based dual protein inhibitors for both farnesyltransferase and geranylgeranyltransferase-I.
    Qiao Y; Gao J; Qiu Y; Wu L; Guo F; Lo KK; Li D
    Eur J Med Chem; 2011 Jun; 46(6):2264-73. PubMed ID: 21440964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico techniques for the identification of bioisosteric replacements for drug design.
    Devereux M; Popelier PL
    Curr Top Med Chem; 2010; 10(6):657-68. PubMed ID: 20337588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De Novo Molecule Design by Translating from Reduced Graphs to SMILES.
    Pogány P; Arad N; Genway S; Pickett SD
    J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intuitive ordering of scaffolds and scaffold similarity searching using scaffold keys.
    Ertl P
    J Chem Inf Model; 2014 Jun; 54(6):1617-22. PubMed ID: 24846291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads.
    Böhm HJ
    J Comput Aided Mol Des; 1992 Dec; 6(6):593-606. PubMed ID: 1291628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. World Wide Web-based system for the calculation of substituent parameters and substituent similarity searches.
    Ertl P
    J Mol Graph Model; 1998 Feb; 16(1):11-3, 36. PubMed ID: 9783255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic superposition of drug molecules based on their common receptor site.
    Kato Y; Inoue A; Yamada M; Tomioka N; Itai A
    J Comput Aided Mol Des; 1992 Oct; 6(5):475-86. PubMed ID: 1474395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A data mining method to facilitate SAR transfer.
    Wassermann AM; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1857-66. PubMed ID: 21774471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaffold-hopping potential of fragment-based de novo design: the chances and limits of variation.
    Krueger BA; Dietrich A; Baringhaus KH; Schneider G
    Comb Chem High Throughput Screen; 2009 May; 12(4):383-96. PubMed ID: 19442066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffold hopping by fragment replacement.
    Vainio MJ; Kogej T; Raubacher F; Sadowski J
    J Chem Inf Model; 2013 Jul; 53(7):1825-35. PubMed ID: 23826858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The quest for bioisosteric replacements.
    Wagener M; Lommerse JP
    J Chem Inf Model; 2006; 46(2):677-85. PubMed ID: 16562998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis and biological evaluation of substituted dioxodibenzothiazepines and dibenzocycloheptanes as farnesyltransferase inhibitors.
    Gilleron P; Wlodarczyk N; Houssin R; Farce A; Laconde G; Goossens JF; Lemoine A; Pommery N; Hénichart JP; Millet R
    Bioorg Med Chem Lett; 2007 Oct; 17(19):5465-71. PubMed ID: 17827015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.