These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23053864)

  • 81. Note on the coefficient of variations of neuronal spike trains.
    Lengler J; Steger A
    Biol Cybern; 2017 Aug; 111(3-4):229-235. PubMed ID: 28432423
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Estimation of parameters in Shot-Noise-Driven Doubly Stochastic Poisson processes using the EM algorithm--modeling of pre- and postsynaptic spike trains.
    Mino H
    Methods Inf Med; 2007; 46(2):151-4. PubMed ID: 17347746
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An in silico model for determining the influence of neuronal co-activity on rodent spatial behavior.
    Srinivasan A; Srinivasan A; Riceberg JS; Goodman MR; Guise KG; Shapiro ML
    J Neurosci Methods; 2022 Jul; 377():109627. PubMed ID: 35609789
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Comparison of Different Spike Train Synchrony Measures Regarding Their Robustness to Erroneous Data From Bicuculline-Induced Epileptiform Activity.
    Ciba M; Bestel R; Nick C; de Arruda GF; Peron T; Henrique CC; Costa LDF; Rodrigues FA; Thielemann C
    Neural Comput; 2020 May; 32(5):887-911. PubMed ID: 32187002
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A discrete time neural network model with spiking neurons: II: dynamics with noise.
    Cessac B
    J Math Biol; 2011 Jun; 62(6):863-900. PubMed ID: 20658138
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Estimating the temporal interval entropy of neuronal discharge.
    Reeke GN; Coop AD
    Neural Comput; 2004 May; 16(5):941-70. PubMed ID: 15070505
    [TBL] [Abstract][Full Text] [Related]  

  • 87. An Information-Theoretic Framework to Measure the Dynamic Interaction Between Neural Spike Trains.
    Mijatovic G; Antonacci Y; Loncar-Turukalo T; Minati L; Faes L
    IEEE Trans Biomed Eng; 2021 Dec; 68(12):3471-3481. PubMed ID: 33872139
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Estimating nonstationary input signals from a single neuronal spike train.
    Kim H; Shinomoto S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051903. PubMed ID: 23214810
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Spike train metrics.
    Victor JD
    Curr Opin Neurobiol; 2005 Oct; 15(5):585-92. PubMed ID: 16140522
    [TBL] [Abstract][Full Text] [Related]  

  • 90. To spike or not to spike: a probabilistic spiking neuron model.
    Kasabov N
    Neural Netw; 2010 Jan; 23(1):16-9. PubMed ID: 19783402
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons.
    Doose J; Doron G; Brecht M; Lindner B
    J Neurosci; 2016 Oct; 36(43):11120-11132. PubMed ID: 27798191
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Normalized auto- and cross-covariance functions for neuronal spike train analysis.
    Shao XS; Chen PX
    Int J Neurosci; 1987 May; 34(1-2):85-95. PubMed ID: 3610506
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Conditional probability-based significance tests for sequential patterns in multineuronal spike trains.
    Sastry PS; Unnikrishnan KP
    Neural Comput; 2010 Apr; 22(4):1025-59. PubMed ID: 19922295
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Random bin for analyzing neuron spike trains.
    Tamura S; Miyoshi T; Sawai H; Mizuno-Matsumoto Y
    Comput Intell Neurosci; 2012; 2012():153496. PubMed ID: 22919370
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Modeling multiscale causal interactions between spiking and field potential signals during behavior.
    Wang C; Pesaran B; Shanechi MM
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35073530
    [No Abstract]   [Full Text] [Related]  

  • 96. An efficient algorithm for continuous time cross correlogram of spike trains.
    Park I; Paiva AR; Demarse TB; Príncipe JC
    J Neurosci Methods; 2008 Mar; 168(2):514-23. PubMed ID: 18054082
    [TBL] [Abstract][Full Text] [Related]  

  • 97. An O(n) method of calculating Kendall correlations of spike trains.
    Redman W
    PLoS One; 2019; 14(2):e0212190. PubMed ID: 30763350
    [TBL] [Abstract][Full Text] [Related]  

  • 98. An artificial chaotic spiking neuron inspired by spiral ganglion cell: paralleled spike encoding, theoretical analysis, and electronic circuit implementation.
    Torikai H; Nishigami T
    Neural Netw; 2009; 22(5-6):664-73. PubMed ID: 19595567
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A convolutional neural network for estimating synaptic connectivity from spike trains.
    Endo D; Kobayashi R; Bartolo R; Averbeck BB; Sugase-Miyamoto Y; Hayashi K; Kawano K; Richmond BJ; Shinomoto S
    Sci Rep; 2021 Jun; 11(1):12087. PubMed ID: 34103546
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Linear-nonlinear-time-warp-poisson models of neural activity.
    Lawlor PN; Perich MG; Miller LE; Kording KP
    J Comput Neurosci; 2018 Dec; 45(3):173-191. PubMed ID: 30294750
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.