These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 23053864)

  • 101. Testing a neural coding hypothesis using surrogate data.
    Hirata Y; Katori Y; Shimokawa H; Suzuki H; Blenkinsop TA; Lang EJ; Aihara K
    J Neurosci Methods; 2008 Jul; 172(2):312-22. PubMed ID: 18565591
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Nonrenewal spike train statistics: causes and functional consequences on neural coding.
    Avila-Akerberg O; Chacron MJ
    Exp Brain Res; 2011 May; 210(3-4):353-71. PubMed ID: 21267548
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation.
    Kim H; Shinomoto S
    Math Biosci Eng; 2014 Feb; 11(1):49-62. PubMed ID: 24245682
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Nature and precision of temporal coding in visual cortex: a metric-space analysis.
    Victor JD; Purpura KP
    J Neurophysiol; 1996 Aug; 76(2):1310-26. PubMed ID: 8871238
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Binless Kernel Machine: Modeling Spike Train Transformation for Cognitive Neural Prostheses.
    Qian C; Sun X; Wang Y; Zheng X; Wang Y; Pan G
    Neural Comput; 2020 Oct; 32(10):1863-1900. PubMed ID: 32795229
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Estimating the entropy rate of spike trains via Lempel-Ziv complexity.
    Amigó JM; Szczepański J; Wajnryb E; Sanchez-Vives MV
    Neural Comput; 2004 Apr; 16(4):717-36. PubMed ID: 15025827
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Spike trains in a stochastic Hodgkin-Huxley system.
    Henry C T
    Biosystems; 2005 Apr; 80(1):25-36. PubMed ID: 15740832
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Efficient computation of the maximum a posteriori path and parameter estimation in integrate-and-fire and more general state-space models.
    Koyama S; Paninski L
    J Comput Neurosci; 2010 Aug; 29(1-2):89-105. PubMed ID: 19399603
    [TBL] [Abstract][Full Text] [Related]  

  • 110. The dependence of spike field coherence on expected intensity.
    Lepage KQ; Kramer MA; Eden UT
    Neural Comput; 2011 Sep; 23(9):2209-41. PubMed ID: 21671792
    [TBL] [Abstract][Full Text] [Related]  

  • 111. A framework for evaluating pairwise and multiway synchrony among stimulus-driven neurons.
    Kelly RC; Kass RE
    Neural Comput; 2012 Aug; 24(8):2007-32. PubMed ID: 22509967
    [TBL] [Abstract][Full Text] [Related]  

  • 112. A semiparametric Bayesian model for detecting synchrony among multiple neurons.
    Shahbaba B; Zhou B; Lan S; Ombao H; Moorman D; Behseta S
    Neural Comput; 2014 Sep; 26(9):2025-51. PubMed ID: 24922500
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Detecting joint pausiness in parallel spike trains.
    Gärtner M; Duvarci S; Roeper J; Schneider G
    J Neurosci Methods; 2017 Jun; 285():69-81. PubMed ID: 28495371
    [TBL] [Abstract][Full Text] [Related]  

  • 114. To deconvolve, or not to deconvolve: Inferences of neuronal activities using calcium imaging data.
    Shen T; Lur G; Xu X; Yu Z
    J Neurosci Methods; 2022 Jan; 366():109431. PubMed ID: 34856319
    [TBL] [Abstract][Full Text] [Related]  

  • 115. A new similarity measure for spike trains: sensitivity to bursts and periods of inhibition.
    Lyttle D; Fellous JM
    J Neurosci Methods; 2011 Aug; 199(2):296-309. PubMed ID: 21600921
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Spike-Centered Jitter Can Mistake Temporal Structure.
    Platkiewicz J; Stark E; Amarasingham A
    Neural Comput; 2017 Mar; 29(3):783-803. PubMed ID: 28095192
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Advanced correlation grid: Analysis and visualisation of functional connectivity among multiple spike trains.
    Masud MS; Borisyuk R; Stuart L
    J Neurosci Methods; 2017 Jul; 286():78-101. PubMed ID: 28506880
    [TBL] [Abstract][Full Text] [Related]  

  • 118. A simple algorithm for averaging spike trains.
    Julienne H; Houghton C
    J Math Neurosci; 2013 Feb; 3(1):3. PubMed ID: 23442535
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Statistical analysis and decoding of neural activity in the rodent geniculate ganglion using a metric-based inference system.
    Wu W; Mast TG; Ziembko C; Breza JM; Contreras RJ
    PLoS One; 2013; 8(5):e65439. PubMed ID: 23738016
    [TBL] [Abstract][Full Text] [Related]  

  • 120. A procedure for testing across-condition rhythmic spike-field association change.
    Lepage KQ; Gregoriou GG; Kramer MA; Aoi M; Gotts SJ; Eden UT; Desimone R
    J Neurosci Methods; 2013 Feb; 213(1):43-62. PubMed ID: 23164959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.