These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23053930)

  • 21. A Smart Imaging Workflow for Organ-Specific Screening in a Cystic Kidney Zebrafish Disease Model.
    Pandey G; Westhoff JH; Schaefer F; Gehrig J
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30875791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated phenotype recognition for zebrafish embryo based in vivo high throughput toxicity screening of engineered nano-materials.
    Liu R; Lin S; Rallo R; Zhao Y; Damoiseaux R; Xia T; Lin S; Nel A; Cohen Y
    PLoS One; 2012; 7(4):e35014. PubMed ID: 22506062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing zebrafish chemical screens.
    Peterson RT; Fishman MC
    Methods Cell Biol; 2011; 105():525-41. PubMed ID: 21951546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical screening in zebrafish for novel biological and therapeutic discovery.
    Tan JL; Zon LI
    Methods Cell Biol; 2011; 105():493-516. PubMed ID: 21951544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of cell aggregation and altered cell viability by automated label-free video microscopy: a promising alternative to endpoint viability assays in high-throughput screening.
    Aftab O; Fryknäs M; Hammerling U; Larsson R; Gustafsson MG
    J Biomol Screen; 2015 Mar; 20(3):372-81. PubMed ID: 25520371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-Throughput Video Processing of Heart Rate Responses in Multiple Wild-type Embryonic Zebrafish per Imaging Field.
    Martin WK; Tennant AH; Conolly RB; Prince K; Stevens JS; DeMarini DM; Martin BL; Thompson LC; Gilmour MI; Cascio WE; Hays MD; Hazari MS; Padilla S; Farraj AK
    Sci Rep; 2019 Jan; 9(1):145. PubMed ID: 30644404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the Droplet-Microarray Platform for High-Throughput Screening of Suspension Cells.
    Popova AA; Depew C; Permana KM; Trubitsyn A; Peravali R; Ordiano JÁ; Reischl M; Levkin PA
    SLAS Technol; 2017 Apr; 22(2):163-175. PubMed ID: 28095175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automation of Technology for Cancer Research.
    van der Ent W; Veneman WJ; Groenewoud A; Chen L; Tulotta C; Hogendoorn PC; Spaink HP; Snaar-Jagalska BE
    Adv Exp Med Biol; 2016; 916():315-32. PubMed ID: 27165360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A versatile, automated and high-throughput drug screening platform for zebrafish embryos.
    Lubin A; Otterstrom J; Hoade Y; Bjedov I; Stead E; Whelan M; Gestri G; Paran Y; Payne E
    Biol Open; 2021 Sep; 10(9):. PubMed ID: 34472582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First quantitative high-throughput screen in zebrafish identifies novel pathways for increasing pancreatic β-cell mass.
    Wang G; Rajpurohit SK; Delaspre F; Walker SL; White DT; Ceasrine A; Kuruvilla R; Li RJ; Shim JS; Liu JO; Parsons MJ; Mumm JS
    Elife; 2015 Jul; 4():. PubMed ID: 26218223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated high-throughput heartbeat quantification in medaka and zebrafish embryos under physiological conditions.
    Gierten J; Pylatiuk C; Hammouda OT; Schock C; Stegmaier J; Wittbrodt J; Gehrig J; Loosli F
    Sci Rep; 2020 Feb; 10(1):2046. PubMed ID: 32029752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated and semi-automated cell tracking: addressing portability challenges.
    Kan A; Chakravorty R; Bailey J; Leckie C; Markham J; Dowling MR
    J Microsc; 2011 Nov; 244(2):194-213. PubMed ID: 21895653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Streamlining drug discovery assays for cardiovascular disease using zebrafish.
    Pott A; Rottbauer W; Just S
    Expert Opin Drug Discov; 2020 Jan; 15(1):27-37. PubMed ID: 31570020
    [No Abstract]   [Full Text] [Related]  

  • 34. Automated cell tracking and analysis in phase-contrast videos (iTrack4U): development of Java software based on combined mean-shift processes.
    Cordelières FP; Petit V; Kumasaka M; Debeir O; Letort V; Gallagher SJ; Larue L
    PLoS One; 2013; 8(11):e81266. PubMed ID: 24312283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combining motion analysis and microfluidics--a novel approach for detecting whole-animal responses to test substances.
    Rudin-Bitterli TS; Tills O; Spicer JI; Culverhouse PF; Wielhouwer EM; Richardson MK; Rundle SD
    PLoS One; 2014; 9(12):e113235. PubMed ID: 25464030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An automatic method to calculate heart rate from zebrafish larval cardiac videos.
    Kang CP; Tu HC; Fu TF; Wu JM; Chu PH; Chang DT
    BMC Bioinformatics; 2018 May; 19(1):169. PubMed ID: 29743010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computerized image analysis for quantitative neuronal phenotyping in zebrafish.
    Liu T; Lu J; Wang Y; Campbell WA; Huang L; Zhu J; Xia W; Wong ST
    J Neurosci Methods; 2006 Jun; 153(2):190-202. PubMed ID: 16364449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphological analysis of zebrafish embryo tails.
    Lu J; Wu T; Cheng L; Zhu Z; Yang J
    Int J Comput Biol Drug Des; 2012; 5(1):75-88. PubMed ID: 22436300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robotic liquid handling and automation in epigenetics.
    Gaisford W
    J Lab Autom; 2012 Oct; 17(5):327-9. PubMed ID: 22933618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated sample area definition for high-throughput microscopy.
    Zeder M; Ellrott A; Amann R
    Cytometry A; 2011 Apr; 79(4):306-10. PubMed ID: 21412981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.