BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23053932)

  • 41. Identification of two inactive forms of the central sulfur cycle protein SoxYZ of Paracoccus pantotrophus.
    Quentmeier A; Li L; Friedrich CG
    FEBS Lett; 2008 Oct; 582(25-26):3701-4. PubMed ID: 18834882
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure and function of a cysBJIH gene cluster in the purple sulphur bacterium Thiocapsa roseopersicina.
    Haverkamp T; Schwenn JD
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():115-125. PubMed ID: 10206689
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fast conformational exchange between the sulfur-free and persulfide-bound rhodanese domain of E. coli YgaP.
    Wang W; Zhou P; He Y; Yu L; Xiong Y; Tian C; Wu F
    Biochem Biophys Res Commun; 2014 Sep; 452(3):817-21. PubMed ID: 25204500
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Specific interaction of lipoate at the active site of rhodanese.
    Cianci M; Gliubich F; Zanotti G; Berni R
    Biochim Biophys Acta; 2000 Aug; 1481(1):103-8. PubMed ID: 11004580
    [TBL] [Abstract][Full Text] [Related]  

  • 45. X-ray crystallographic analysis of the sulfur carrier protein SoxY from Chlorobium limicola f. thiosulfatophilum reveals a tetrameric structure.
    Stout J; Van Driessche G; Savvides SN; Van Beeumen J
    Protein Sci; 2007 Apr; 16(4):589-601. PubMed ID: 17327392
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of the cys gene locus from Allochromatium vinosum indicates an unusual sulfate assimilation pathway.
    Neumann S; Wynen A; Trüper HG; Dahl C
    Mol Biol Rep; 2000 Mar; 27(1):27-33. PubMed ID: 10939523
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structure and catalytic properties of Bacillus anthracis CoADR-RHD: implications for flavin-linked sulfur trafficking.
    Wallen JR; Mallett TC; Boles W; Parsonage D; Furdui CM; Karplus PA; Claiborne A
    Biochemistry; 2009 Oct; 48(40):9650-67. PubMed ID: 19725515
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of dissimilatory sulfur oxidation in the purple sulfur bacterium allochromatium vinosum.
    Grimm F; Franz B; Dahl C
    Front Microbiol; 2011; 2():51. PubMed ID: 21927612
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of the cytochrome complex SoxXA of Paracoccus pantotrophus, a heme enzyme initiating chemotrophic sulfur oxidation.
    Dambe T; Quentmeier A; Rother D; Friedrich C; Scheidig AJ
    J Struct Biol; 2005 Dec; 152(3):229-34. PubMed ID: 16297640
    [TBL] [Abstract][Full Text] [Related]  

  • 50. rdlA, a new gene encoding a rhodanese-like protein in Halanaerobium congolense and other thiosulfate-reducing anaerobes.
    Ravot G; Casalot L; Ollivier B; Loison G; Magot M
    Res Microbiol; 2005 Dec; 156(10):1031-8. PubMed ID: 16085393
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparative quantitative proteomic study identifies new proteins relevant for sulfur oxidation in the purple sulfur bacterium Allochromatium vinosum.
    Weissgerber T; Sylvester M; Kröninger L; Dahl C
    Appl Environ Microbiol; 2014 Apr; 80(7):2279-92. PubMed ID: 24487535
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sulfur metabolism in phototrophic sulfur bacteria.
    Frigaard NU; Dahl C
    Adv Microb Physiol; 2009; 54():103-200. PubMed ID: 18929068
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Active site structural features for chemically modified forms of rhodanese.
    Gliubich F; Gazerro M; Zanotti G; Delbono S; Bombieri G; Berni R
    J Biol Chem; 1996 Aug; 271(35):21054-61. PubMed ID: 8702871
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DsrEFH from Allochromatium vinosum.
    Dahl C; Schulte A; Shin DH
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Oct; 63(Pt 10):890-2. PubMed ID: 17909298
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of a thiosulfate utilization gene cluster from the green phototrophic bacterium Chlorobium limicola.
    Verté F; Kostanjevecki V; De Smet L; Meyer TE; Cusanovich MA; Van Beeumen JJ
    Biochemistry; 2002 Mar; 41(9):2932-45. PubMed ID: 11863431
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intermediates in the Sox sulfur oxidation pathway are bound to a sulfane conjugate of the carrier protein SoxYZ.
    Grabarczyk DB; Berks BC
    PLoS One; 2017; 12(3):e0173395. PubMed ID: 28257465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thiosulfate dehydrogenase: a widespread unusual acidophilic c-type cytochrome.
    Denkmann K; Grein F; Zigann R; Siemen A; Bergmann J; van Helmont S; Nicolai A; Pereira IA; Dahl C
    Environ Microbiol; 2012 Oct; 14(10):2673-88. PubMed ID: 22779704
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural interaction between DsrE-DsrF-DsrH proteins involved in the transport of electrons in the dsr operon.
    Bagchi A; Ghosh TC
    J Biomol Struct Dyn; 2008 Apr; 25(5):517-23. PubMed ID: 18282006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria.
    Dahl C; Rákhely G; Pott-Sperling AS; Fodor B; Takács M; Tóth A; Kraeling M; Gy"orfi K; Kovács A; Tusz J; Kovács KL
    FEMS Microbiol Lett; 1999 Nov; 180(2):317-24. PubMed ID: 10556728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.