BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23054075)

  • 1. Mitochondrial haplotype divergences affect specific temperature sensitivity of mitochondrial respiration.
    Pichaud N; Ballard JW; Tanguay RM; Blier PU
    J Bioenerg Biomembr; 2013 Feb; 45(1-2):25-35. PubMed ID: 23054075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sympatric Drosophila simulans flies with distinct mtDNA show difference in mitochondrial respiration and electron transport.
    Katewa SD; Ballard JW
    Insect Biochem Mol Biol; 2007 Mar; 37(3):213-22. PubMed ID: 17296496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal sensitivity of mitochondrial metabolism in two distinct mitotypes of Drosophila simulans: evaluation of mitochondrial plasticity.
    Pichaud N; Chatelain EH; Ballard JW; Tanguay R; Morrow G; Blier PU
    J Exp Biol; 2010 May; 213(Pt 10):1665-75. PubMed ID: 20435817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naturally occurring mitochondrial DNA haplotypes exhibit metabolic differences: insight into functional properties of mitochondria.
    Pichaud N; Ballard JW; Tanguay RM; Blier PU
    Evolution; 2012 Oct; 66(10):3189-97. PubMed ID: 23025608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sympatric Drosophila simulans flies with distinct mtDNA show age related differences in mitochondrial metabolism.
    Katewa SD; Ballard JW
    Insect Biochem Mol Biol; 2007 Sep; 37(9):923-32. PubMed ID: 17681231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal sensitivity of mitochondrial functions in permeabilized muscle fibers from two populations of Drosophila simulans with divergent mitotypes.
    Pichaud N; Ballard JW; Tanguay RM; Blier PU
    Am J Physiol Regul Integr Comp Physiol; 2011 Jul; 301(1):R48-59. PubMed ID: 21451139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional conservatism among Drosophila simulans flies experiencing different thermal regimes and mitochondrial DNA introgression.
    Chatelain EH; Pichaud N; Ballard JW; Tanguay RM; Morrow G; Blier PU
    J Exp Zool B Mol Dev Evol; 2011 May; 316B(3):188-98. PubMed ID: 21462313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial DNA variation is associated with measurable differences in life-history traits and mitochondrial metabolism in Drosophila simulans.
    Ballard JW; Melvin RG; Katewa SD; Maas K
    Evolution; 2007 Jul; 61(7):1735-47. PubMed ID: 17598752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonrandom partition of mitochondria in heteroplasmic Drosophila.
    De Stordeur E
    Heredity (Edinb); 1997 Dec; 79 ( Pt 6)():615-23. PubMed ID: 9418268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of mitochondrial genotype and aging.
    Ballard JW; Katewa SD; Melvin RG; Chan G
    Ann N Y Acad Sci; 2007 Oct; 1114():93-106. PubMed ID: 17934050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial DNA in the Drosophila melanogaster complex.
    Solignac M
    Genetica; 2004 Mar; 120(1-3):41-50. PubMed ID: 15088645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial DNA heteroplasmy maintained in natural populations of Drosophila simulans in Réunion.
    Matsuura ET; Fukuda H; Chigusa SI
    Genet Res; 1991 Apr; 57(2):123-6. PubMed ID: 2055455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sirt4 Modulates Oxidative Metabolism and Sensitivity to Rapamycin Through Species-Dependent Phenotypes in
    Sejour R; Sanguino RA; Mikolajczak M; Ahmadi W; Villa-Cuesta E
    G3 (Bethesda); 2020 May; 10(5):1599-1612. PubMed ID: 32152006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytonuclear coadaptation in Drosophila: disruption of cytochrome c oxidase activity in backcross genotypes.
    Sackton TB; Haney RA; Rand DM
    Evolution; 2003 Oct; 57(10):2315-25. PubMed ID: 14628919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial DNA variability in Drosophila simulans: quasi absence of polymorphism within each of the three cytoplasmic races.
    Baba-Aïssa F; Solignac M; Dennebouy N; David JR
    Heredity (Edinb); 1988 Dec; 61 ( Pt 3)():419-26. PubMed ID: 2906636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial genotype affects fitness in Drosophila simulans.
    James AC; Ballard JW
    Genetics; 2003 May; 164(1):187-94. PubMed ID: 12750331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of two Wolbachia strains on population structure of East African Drosophila simulans.
    Dean MD; Ballard KJ; Glass A; Ballard JW
    Genetics; 2003 Dec; 165(4):1959-69. PubMed ID: 14704179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Wolbachia-associated fitness benefit depends on genetic background in Drosophila simulans.
    Dean MD
    Proc Biol Sci; 2006 Jun; 273(1592):1415-20. PubMed ID: 16777731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The generation of transplasmic Drosophila simulans by cytoplasmic injection: effects of segregation and selection on the perpetuation of mitochondrial DNA heteroplasmy.
    de Stordeur E; Solignac M; Monnerot M; Mounolou JC
    Mol Gen Genet; 1989 Dec; 220(1):127-32. PubMed ID: 2608025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential evolution of a symbiont inferred from the host: Wolbachia and Drosophila simulans.
    Ballard JW
    Mol Biol Evol; 2004 Mar; 21(3):428-42. PubMed ID: 14660690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.