These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 23054090)

  • 1. Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates.
    Arosio P; Rima S; Morbidelli M
    Pharm Res; 2013 Mar; 30(3):641-54. PubMed ID: 23054090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoclonal Antibodies Follow Distinct Aggregation Pathways During Production-Relevant Acidic Incubation and Neutralization.
    Skamris T; Tian X; Thorolfsson M; Karkov HS; Rasmussen HB; Langkilde AE; Vestergaard B
    Pharm Res; 2016 Mar; 33(3):716-28. PubMed ID: 26563206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonnative aggregation of an IgG1 antibody in acidic conditions, part 2: nucleation and growth kinetics with competing growth mechanisms.
    Brummitt RK; Nesta DP; Chang L; Kroetsch AM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2104-19. PubMed ID: 21213307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation stability of a monoclonal antibody during downstream processing.
    Arosio P; Barolo G; Müller-Späth T; Wu H; Morbidelli M
    Pharm Res; 2011 Aug; 28(8):1884-94. PubMed ID: 21448757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of the multistep aggregation mechanism of monoclonal antibodies.
    Nicoud L; Arosio P; Sozo M; Yates A; Norrant E; Morbidelli M
    J Phys Chem B; 2014 Sep; 118(36):10595-606. PubMed ID: 25119992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the relevance of local conformational stability and dynamics to the aggregation propensity of an IgG1 and IgG2 monoclonal antibodies.
    Thakkar SV; Sahni N; Joshi SB; Kerwin BA; He F; Volkin DB; Middaugh CR
    Protein Sci; 2013 Oct; 22(10):1295-305. PubMed ID: 23893936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of cosolutes in the aggregation kinetics of monoclonal antibodies.
    Nicoud L; Sozo M; Arosio P; Yates A; Norrant E; Morbidelli M
    J Phys Chem B; 2014 Oct; 118(41):11921-30. PubMed ID: 25243487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased aggregation propensity of IgG2 subclass over IgG1: role of conformational changes and covalent character in isolated aggregates.
    Franey H; Brych SR; Kolvenbach CG; Rajan RS
    Protein Sci; 2010 Sep; 19(9):1601-15. PubMed ID: 20556807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonnative aggregation of an IgG1 antibody in acidic conditions: part 1. Unfolding, colloidal interactions, and formation of high-molecular-weight aggregates.
    Brummitt RK; Nesta DP; Chang L; Chase SF; Laue TM; Roberts CJ
    J Pharm Sci; 2011 Jun; 100(6):2087-103. PubMed ID: 21213308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational and Colloidal Stabilities of Isolated Constant Domains of Human Immunoglobulin G and Their Impact on Antibody Aggregation under Acidic Conditions.
    Yageta S; Lauer TM; Trout BL; Honda S
    Mol Pharm; 2015 May; 12(5):1443-55. PubMed ID: 25871775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Throughput Prediction Approach for Monoclonal Antibody Aggregation at High Concentration.
    Zidar M; Šušterič A; Ravnik M; Kuzman D
    Pharm Res; 2017 Sep; 34(9):1831-1839. PubMed ID: 28593474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of pH on heat-induced aggregation and degradation of therapeutic monoclonal antibodies.
    Ishikawa T; Ito T; Endo R; Nakagawa K; Sawa E; Wakamatsu K
    Biol Pharm Bull; 2010; 33(8):1413-7. PubMed ID: 20686240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational implications of an inversed pH-dependent antibody aggregation.
    Perico N; Purtell J; Dillon TM; Ricci MS
    J Pharm Sci; 2009 Sep; 98(9):3031-42. PubMed ID: 18803243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution.
    Arosio P; Jaquet B; Wu H; Morbidelli M
    Biophys Chem; 2012 Jul; 168-169():19-27. PubMed ID: 22750560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-order nucleation and subsequent growth promote liquid-liquid phase separation of a model IgG1 mAb.
    Tian Z; Xu L; Zhang N; Qian F
    Int J Pharm; 2020 Oct; 588():119681. PubMed ID: 32721563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation of Colloidal and Conformational Stabilities to Aggregate Formation in a Monoclonal Antibody.
    Oyama H; Koga H; Tadokoro T; Maenaka K; Shiota A; Yokoyama M; Noda M; Torisu T; Uchiyama S
    J Pharm Sci; 2020 Jan; 109(1):308-315. PubMed ID: 31669120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a human IgG2 antibody stable at low pH.
    Saito S; Namisaki H; Hiraishi K; Takahashi N; Iida S
    Protein Sci; 2020 May; 29(5):1186-1195. PubMed ID: 32142185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition.
    Hari SB; Lau H; Razinkov VI; Chen S; Latypov RF
    Biochemistry; 2010 Nov; 49(43):9328-38. PubMed ID: 20843079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation and pH-temperature phase behavior for aggregates of an IgG2 antibody.
    Sahin E; Weiss WF; Kroetsch AM; King KR; Kessler RK; Das TK; Roberts CJ
    J Pharm Sci; 2012 May; 101(5):1678-87. PubMed ID: 22246657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of monoclonal antibodies at high-concentration: head-to-head comparison of the IgG1 and IgG4 subclass.
    Neergaard MS; Nielsen AD; Parshad H; Van De Weert M
    J Pharm Sci; 2014 Jan; 103(1):115-27. PubMed ID: 24282022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.