BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23054094)

  • 1. Pharmaceutical differences between block copolymer self-assembled and cross-linked nanoassemblies as carriers for tunable drug release.
    Lee HJ; Bae Y
    Pharm Res; 2013 Feb; 30(2):478-88. PubMed ID: 23054094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-linked nanoassemblies from poly(ethylene glycol)-poly(aspartate) block copolymers as stable supramolecular templates for particulate drug delivery.
    Lee HJ; Bae Y
    Biomacromolecules; 2011 Jul; 12(7):2686-96. PubMed ID: 21644544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug release patterns and cytotoxicity of PEG-poly(aspartate) block copolymer micelles in cancer cells.
    Eckman AM; Tsakalozou E; Kang NY; Ponta A; Bae Y
    Pharm Res; 2012 Jul; 29(7):1755-67. PubMed ID: 22322898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo-inducible crosslinked nanoassemblies for pH-controlled drug release.
    Dickerson M; Winquist N; Bae Y
    Pharm Res; 2014 May; 31(5):1254-63. PubMed ID: 24254196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(ethylene glycol) shell-sheddable TAT-modified core cross-linked nano-micelles: TAT-enhanced cellular uptake and lysosomal pH-triggered doxorubicin release.
    Zhang Y; Xiao Y; Huang Y; He Y; Xu Y; Lu W; Yu J
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110772. PubMed ID: 31999965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-preferential sustained drug release enhances antitumor activity of block copolymer micelles.
    Ponta A; Bae Y
    J Drug Target; 2014 Aug; 22(7):619-28. PubMed ID: 24766185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing poly(epsilon-caprolactone)-b-chitooligosaccharide-b-poly(ethylene glycol) (PCP) copolymer micelles for doxorubicin (DOX) delivery: effects of crosslinked of amine groups.
    Chung TW; Liu DZ; Hsieh JH; Fan XC; Yang JD; Chen JH
    J Nanosci Nanotechnol; 2006; 6(9-10):2902-11. PubMed ID: 17048497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery.
    Prabaharan M; Grailer JJ; Pilla S; Steeber DA; Gong S
    Biomaterials; 2009 Oct; 30(29):5757-66. PubMed ID: 19643472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomicelle drug with acid-triggered doxorubicin release and enhanced cellular uptake ability based on mPEG-graft-poly(N-(2-aminoethyl)-L-aspartamide)-hexahydrophthalic acid copolymers.
    Cao L; Xiao Y; Lu W; Liu S; Gan L; Yu J; Huang J
    J Biomater Appl; 2018 Jan; 32(6):826-838. PubMed ID: 29132238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RGD-tagging of star-shaped PLA-PEG micellar nanoassemblies enhances doxorubicin efficacy against osteosarcoma.
    Oliva R; Torcasio SM; Coulembier O; Piperno A; Mazzaglia A; Scalese S; Rossi A; Bassi G; Panseri S; Montesi M; Scala A
    Int J Pharm; 2024 May; 657():124183. PubMed ID: 38692500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Block copolymer micelles with acid-labile ortho ester side-chains: Synthesis, characterization, and enhanced drug delivery to human glioma cells.
    Tang R; Ji W; Panus D; Palumbo RN; Wang C
    J Control Release; 2011 Apr; 151(1):18-27. PubMed ID: 21194551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEG-poly(amino acid) block copolymer micelles for tunable drug release.
    Ponta A; Bae Y
    Pharm Res; 2010 Nov; 27(11):2330-42. PubMed ID: 20372992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomicelles based on a boronate ester-linked diblock copolymer as the carrier of doxorubicin with enhanced cellular uptake.
    Xu Y; Lu Y; Wang L; Lu W; Huang J; Muir B; Yu J
    Colloids Surf B Biointerfaces; 2016 May; 141():318-326. PubMed ID: 26874117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile preparation of core cross-linked nanomicelles based on graft copolymers with pH responsivity and reduction sensitivity for doxorubicin delivery.
    Chen T; Xiao Y; Lu W; Liu S; Gan L; Yu J; Huang J
    Colloids Surf B Biointerfaces; 2018 Jan; 161():606-613. PubMed ID: 29156337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable thermo-sensitive nanoparticles from poly(L-lactic acid)/poly(ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier.
    Na K; Lee KH; Lee DH; Bae YH
    Eur J Pharm Sci; 2006 Feb; 27(2-3):115-22. PubMed ID: 16253487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and in vitro evaluation of pH-sensitive PEG-I-dC16 block polymer micelles for anticancer drug delivery.
    Rongbin H; Lei X; Ying L; Xiangping D; Xuan C; Lanfang L; Cuiyun Y; Yanming C; Guotao T
    J Pharm Pharmacol; 2016 Jun; 68(6):751-61. PubMed ID: 27018539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer micelles with hydrazone-ester dual linkers for tunable release of dexamethasone.
    Howard MD; Ponta A; Eckman A; Jay M; Bae Y
    Pharm Res; 2011 Oct; 28(10):2435-46. PubMed ID: 21614636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of a targeted and sustained release system for retinoblastoma cells using Doxorubicin as a model drug.
    Boddu SH; Jwala J; Chowdhury MR; Mitra AK
    J Ocul Pharmacol Ther; 2010 Oct; 26(5):459-68. PubMed ID: 20874666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release, partitioning, and conjugation stability of doxorubicin in polymer micelles determined by mechanistic modeling.
    Ponta A; Fugit KD; Anderson BD; Bae Y
    Pharm Res; 2015 May; 32(5):1752-63. PubMed ID: 25407546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micellar carriers based on block copolymers of poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery.
    Shuai X; Ai H; Nasongkla N; Kim S; Gao J
    J Control Release; 2004 Aug; 98(3):415-26. PubMed ID: 15312997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.