BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23054096)

  • 1. Tetanic force potentiation of mouse fast muscle is shortening speed dependent.
    Gittings W; Huang J; Vandenboom R
    J Muscle Res Cell Motil; 2012 Oct; 33(5):359-68. PubMed ID: 23054096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin light-chain phosphorylation and potentiation of dynamic function in mouse fast muscle.
    Xeni J; Gittings WB; Caterini D; Huang J; Houston ME; Grange RW; Vandenboom R
    Pflugers Arch; 2011 Aug; 462(2):349-58. PubMed ID: 21499697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shortening speed dependent force potentiation is attenuated but not eliminated in skeletal muscles without myosin phosphorylation.
    Gittings W; Bunda J; Vandenboom R
    J Muscle Res Cell Motil; 2017 Apr; 38(2):157-162. PubMed ID: 28251466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin light chain phosphorylation is required for peak power output of mouse fast skeletal muscle in vitro.
    Bowslaugh J; Gittings W; Vandenboom R
    Pflugers Arch; 2016 Nov; 468(11-12):2007-2016. PubMed ID: 27896430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of work cycle frequency on the potentiation of dynamic force in mouse fast twitch skeletal muscle.
    Caterini D; Gittings W; Huang J; Vandenboom R
    J Exp Biol; 2011 Dec; 214(Pt 23):3915-23. PubMed ID: 22071182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: is resting calcium responsible?
    Smith IC; Gittings W; Huang J; McMillan EM; Quadrilatero J; Tupling AR; Vandenboom R
    J Gen Physiol; 2013 Mar; 141(3):297-308. PubMed ID: 23401574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiation of in vitro concentric work in mouse fast muscle.
    Grange RW; Vandenboom R; Xeni J; Houston ME
    J Appl Physiol (1985); 1998 Jan; 84(1):236-43. PubMed ID: 9451641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of skeletal myosin light chain kinase gene ablation on the fatigability of mouse fast muscle.
    Gittings W; Huang J; Smith IC; Quadrilatero J; Vandenboom R
    J Muscle Res Cell Motil; 2011 Mar; 31(5-6):337-48. PubMed ID: 21298329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced skeletal muscle contraction with myosin light chain phosphorylation by a calmodulin-sensing kinase.
    Ryder JW; Lau KS; Kamm KE; Stull JT
    J Biol Chem; 2007 Jul; 282(28):20447-54. PubMed ID: 17504755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The force dependence of isometric and concentric potentiation in mouse muscle with and without skeletal myosin light chain kinase.
    Gittings W; Aggarwal H; Stull JT; Vandenboom R
    Can J Physiol Pharmacol; 2015 Jan; 93(1):23-32. PubMed ID: 25412230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epinephrine augments posttetanic potentiation in mouse skeletal muscle with and without myosin phosphorylation.
    Morris SR; Gittings W; Vandenboom R
    Physiol Rep; 2018 May; 6(9):e13690. PubMed ID: 29718592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiation of force by extracellular potassium and posttetanic potentiation are additive in mouse fast-twitch muscle in vitro.
    Overgaard K; Gittings W; Vandenboom R
    Pflugers Arch; 2022 Jun; 474(6):637-646. PubMed ID: 35266019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased force development rates of fatigued mouse skeletal muscle are graded to myosin light chain phosphate content.
    Vandenboom R; Xeni J; Bestic NM; Houston ME
    Am J Physiol; 1997 Jun; 272(6 Pt 2):R1980-4. PubMed ID: 9227617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of myosin and twitch potentiation in fatigued skeletal muscle.
    Vandenboom R; Houston ME
    Can J Physiol Pharmacol; 1996 Dec; 74(12):1315-21. PubMed ID: 9047041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threshold for force potentiation associated with skeletal myosin phosphorylation.
    Vandenboom R; Grange RW; Houston ME
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1456-62. PubMed ID: 8279509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatiguing stimulation increases curvature of the force-velocity relationship in isolated fast-twitch and slow-twitch rat muscles.
    Kristensen AM; Nielsen OB; Pedersen TH; Overgaard K
    J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31292165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation.
    Bunda J; Gittings W; Vandenboom R
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29361581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of muscle length on post-tetanic potentiation of C57BL/6 and skMLCK
    Angelidis A; Vandenboom R
    J Muscle Res Cell Motil; 2022 Sep; 43(3):99-111. PubMed ID: 35771335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measured and modeled properties of mammalian skeletal muscle. I. The effects of post-activation potentiation on the time course and velocity dependencies of force production.
    Brown IE; Loeb GE
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):443-56. PubMed ID: 10555063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiation of shortening and velocity of shortening during repeated isotonic tetanic contractions in mammalian skeletal muscle.
    MacIntosh BR; Bryan SN
    Pflugers Arch; 2002 Mar; 443(5-6):804-12. PubMed ID: 11889579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.