BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 23054939)

  • 1. Interkinetic nuclear migration during early development of midgut and ureteric epithelia.
    Yamada M; Udagawa J; Hashimoto R; Matsumoto A; Hatta T; Otani H
    Anat Sci Int; 2013 Jan; 88(1):31-7. PubMed ID: 23054939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interkinetic nuclear migration in the mouse embryonic ureteric epithelium: Possible implication for congenital anomalies of the kidney and urinary tract.
    Motoya T; Ogawa N; Nitta T; Rafiq AM; Jahan E; Furuya M; Matsumoto A; Udagawa J; Otani H
    Congenit Anom (Kyoto); 2016 May; 56(3):127-34. PubMed ID: 26710751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural progenitor nuclei IN motion.
    Taverna E; Huttner WB
    Neuron; 2010 Sep; 67(6):906-14. PubMed ID: 20869589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myosin II is required for interkinetic nuclear migration of neural progenitors.
    Schenk J; Wilsch-Bräuninger M; Calegari F; Huttner WB
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16487-92. PubMed ID: 19805325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells.
    Carneiro AC; Fragel-Madeira L; Silva-Neto MA; Linden R
    Dev Neurobiol; 2008 Apr; 68(5):620-31. PubMed ID: 18278803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell cycle progression is required for nuclear migration of neural progenitor cells.
    Ueno M; Katayama K; Yamauchi H; Nakayama H; Doi K
    Brain Res; 2006 May; 1088(1):57-67. PubMed ID: 16650835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interkinetic nuclear migration in the tracheal and esophageal epithelia of the mouse embryo: Possible implications for tracheo-esophageal anomalies.
    Kaneda R; Saeki Y; Getachew D; Matsumoto A; Furuya M; Ogawa N; Motoya T; Rafiq AM; Jahan E; Udagawa J; Hashimoto R; Otani H
    Congenit Anom (Kyoto); 2018 Mar; 58(2):62-70. PubMed ID: 28782137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of interkinetic nuclear migration by cell cycle-coupled active and passive mechanisms in the developing brain.
    Kosodo Y; Suetsugu T; Suda M; Mimori-Kiyosue Y; Toida K; Baba SA; Kimura A; Matsuzaki F
    EMBO J; 2011 May; 30(9):1690-704. PubMed ID: 21441895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interkinetic nuclear movements promote apical expansion in pseudostratified epithelia at the expense of apicobasal elongation.
    Ferreira MA; Despin-Guitard E; Duarte F; Degond P; Theveneau E
    PLoS Comput Biol; 2019 Dec; 15(12):e1007171. PubMed ID: 31869321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ups and downs of neural progenitors: Cep120 and TACCs control interkinetic nuclear migration.
    Guerrier S; Polleux F
    Neuron; 2007 Oct; 56(1):1-3. PubMed ID: 17920006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interkinetic nuclear migration: a mysterious process in search of a function.
    Spear PC; Erickson CA
    Dev Growth Differ; 2012 Apr; 54(3):306-16. PubMed ID: 22524603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes in interkinetic nuclear migration dynamics with respect to cell-cycle progression in the mouse cerebral cortex ventricular zone.
    Fousse J; Gautier E; Patti D; Dehay C
    J Comp Neurol; 2019 Jul; 527(10):1545-1557. PubMed ID: 30682231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interkinetic nuclear migration generates and opposes ventricular-zone crowding: insight into tissue mechanics.
    Miyata T; Okamoto M; Shinoda T; Kawaguchi A
    Front Cell Neurosci; 2014; 8():473. PubMed ID: 25674051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global pattern of interkinetic nuclear migration in tracheoesophageal epithelia of the mouse embryo: Interorgan and intraorgan regional differences.
    Getachew D; Matsumoto A; Uchimura Y; Udagawa J; Mita N; Ogawa N; Moriyama S; Takami A; Otani H
    Congenit Anom (Kyoto); 2021 May; 61(3):82-96. PubMed ID: 33249638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TAG-1-assisted progenitor elongation streamlines nuclear migration to optimize subapical crowding.
    Okamoto M; Namba T; Shinoda T; Kondo T; Watanabe T; Inoue Y; Takeuchi K; Enomoto Y; Ota K; Oda K; Wada Y; Sagou K; Saito K; Sakakibara A; Kawaguchi A; Nakajima K; Adachi T; Fujimori T; Ueda M; Hayashi S; Kaibuchi K; Miyata T
    Nat Neurosci; 2013 Nov; 16(11):1556-66. PubMed ID: 24056697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interkinetic nuclear movement may provide spatial clues to the regulation of neurogenesis.
    Murciano A; Zamora J; López-Sánchez J; Frade JM
    Mol Cell Neurosci; 2002 Oct; 21(2):285-300. PubMed ID: 12401448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FAK-mediated extracellular signals are essential for interkinetic nuclear migration and planar divisions in the neuroepithelium.
    Tsuda S; Kitagawa T; Takashima S; Asakawa S; Shimizu N; Mitani H; Shima A; Tsutsumi M; Hori H; Naruse K; Ishikawa Y; Takeda H
    J Cell Sci; 2010 Feb; 123(Pt 3):484-96. PubMed ID: 20067997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell cycle control of Notch signaling and the functional regionalization of the neuroepithelium during vertebrate neurogenesis.
    Latasa MJ; Cisneros E; Frade JM
    Int J Dev Biol; 2009; 53(7):895-908. PubMed ID: 19598111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of neurogenesis by interkinetic nuclear migration through an apical-basal notch gradient.
    Del Bene F; Wehman AM; Link BA; Baier H
    Cell; 2008 Sep; 134(6):1055-65. PubMed ID: 18805097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sun1 Mediates Interkinetic Nuclear Migration and Notch Signaling in the Neurogenesis of Zebrafish.
    You MS; Wang WP; Wang JY; Jiang YJ; Chi YH
    Stem Cells Dev; 2019 Aug; 28(16):1116-1127. PubMed ID: 31140357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.