These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 23055488)

  • 1. Features versus feelings: dissociable representations of the acoustic features and valence of aversive sounds.
    Kumar S; von Kriegstein K; Friston K; Griffiths TD
    J Neurosci; 2012 Oct; 32(41):14184-92. PubMed ID: 23055488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic system for the analysis of acoustic features and valence of aversive sounds in the human brain.
    Kumar S; von Kriegstein K; Friston KJ; Griffiths TD
    Adv Exp Med Biol; 2013; 787():463-72. PubMed ID: 23716253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The auditory cortex and the emotional valence of sounds.
    Concina G; Renna A; Grosso A; Sacchetti B
    Neurosci Biobehav Rev; 2019 Mar; 98():256-264. PubMed ID: 30664888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing pathways for emotional vocalizations.
    Grisendi T; Reynaud O; Clarke S; Da Costa S
    Brain Struct Funct; 2019 Sep; 224(7):2487-2504. PubMed ID: 31280349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.
    Pannese A; Grandjean D; Frühholz S
    Cortex; 2016 Dec; 85():116-125. PubMed ID: 27855282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Audition of laughing and crying leads to right amygdala activation in a low-noise fMRI setting.
    Sander K; Brechmann A; Scheich H
    Brain Res Brain Res Protoc; 2003 May; 11(2):81-91. PubMed ID: 12738003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical representation of natural complex sounds: effects of acoustic features and auditory object category.
    Leaver AM; Rauschecker JP
    J Neurosci; 2010 Jun; 30(22):7604-12. PubMed ID: 20519535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human amygdala activation by the sound produced during dental treatment: A fMRI study.
    Yu JF; Lee KC; Hong HH; Kuo SB; Wu CD; Wai YY; Chen YF; Peng YC
    Noise Health; 2015; 17(78):337-42. PubMed ID: 26356376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulus arousal drives amygdalar responses to emotional expressions across sensory modalities.
    Lin H; Müller-Bardorff M; Gathmann B; Brieke J; Mothes-Lasch M; Bruchmann M; Miltner WHR; Straube T
    Sci Rep; 2020 Feb; 10(1):1898. PubMed ID: 32024891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual Aversive Learning Compromises Sensory Discrimination.
    Shalev L; Paz R; Avidan G
    J Neurosci; 2018 Mar; 38(11):2766-2779. PubMed ID: 29439168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human amygdala disconnecting from auditory cortex preferentially discriminates musical sound of uncertain emotion by altering hemispheric weighting.
    Manno FAM; Lau C; Fernandez-Ruiz J; Manno SH; Cheng SH; Barrios FA
    Sci Rep; 2019 Oct; 9(1):14787. PubMed ID: 31615998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amygdala responses to nonlinguistic emotional vocalizations.
    Fecteau S; Belin P; Joanette Y; Armony JL
    Neuroimage; 2007 Jun; 36(2):480-7. PubMed ID: 17442593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The human amygdala is sensitive to the valence of pictures and sounds irrespective of arousal: an fMRI study.
    Anders S; Eippert F; Weiskopf N; Veit R
    Soc Cogn Affect Neurosci; 2008 Sep; 3(3):233-43. PubMed ID: 19015115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implicit Memory for Complex Sounds in Higher Auditory Cortex of the Ferret.
    Lu K; Liu W; Zan P; David SV; Fritz JB; Shamma SA
    J Neurosci; 2018 Nov; 38(46):9955-9966. PubMed ID: 30266740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the medial temporal limbic system in processing emotions in voice and music.
    Frühholz S; Trost W; Grandjean D
    Prog Neurobiol; 2014 Dec; 123():1-17. PubMed ID: 25291405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping unpleasantness of sounds to their auditory representation.
    Kumar S; Forster HM; Bailey P; Griffiths TD
    J Acoust Soc Am; 2008 Dec; 124(6):3810-7. PubMed ID: 19206807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal representations of distance in human auditory cortex.
    Kopčo N; Huang S; Belliveau JW; Raij T; Tengshe C; Ahveninen J
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):11019-24. PubMed ID: 22699495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory filters, features, and redundant representations.
    Schnupp J
    Neuron; 2006 Aug; 51(3):278-80. PubMed ID: 16880121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural coding strategies in auditory cortex.
    Wang X
    Hear Res; 2007 Jul; 229(1-2):81-93. PubMed ID: 17346911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical processing of auditory objects in humans.
    Kumar S; Stephan KE; Warren JD; Friston KJ; Griffiths TD
    PLoS Comput Biol; 2007 Jun; 3(6):e100. PubMed ID: 17542641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.