These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23055733)

  • 1. Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer.
    da Paz MC; Santos Mde F; Santos CM; da Silva SW; de Souza LB; Lima EC; Silva RC; Lucci CM; Morais PC; Azevedo RB; Lacava ZG
    Int J Nanomedicine; 2012; 7():5271-82. PubMed ID: 23055733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carcinoembryonic antigen-targeted nanoparticles potentiate the delivery of anticancer drugs to colorectal cancer cells.
    Pereira I; Sousa F; Kennedy P; Sarmento B
    Int J Pharm; 2018 Oct; 549(1-2):397-403. PubMed ID: 30110619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoactive imaging and therapy for colorectal cancer using a CEA-Affimer conjugated Foslip nanoparticle.
    Khaled YS; Khot MI; Aiyappa-Maudsley R; Maisey T; Pramanik A; Tiernan J; Lintern N; Al-Enezi E; Shamsuddin SH; Tomlinson D; Coletta L; Millner PA; Hughes TA; Jayne DG
    Nanoscale; 2024 Apr; 16(14):7185-7199. PubMed ID: 38506227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of monoclonal anti-carcinoembryonic antigen (CEA) antibody internalization by electron microscopy, western blotting and radioimmunoassay.
    Tsaltas G; Ford CH; Gallant M
    Anticancer Res; 1992; 12(6B):2133-42. PubMed ID: 1295459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antitumor effect and toxicity of free rhodium (II) citrate and rhodium (II) citrate-loaded maghemite nanoparticles in mice bearing breast cancer.
    Carneiro ML; Peixoto RC; Joanitti GA; Oliveira RG; Telles LA; Miranda-Vilela AL; Bocca AL; Vianna LM; da Silva IC; de Souza AR; Lacava ZG; Báo SN
    J Nanobiotechnology; 2013 Feb; 11():4. PubMed ID: 23414068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted killing of colorectal cancer cell lines by a humanised IgG1 monoclonal antibody that binds to membrane-bound carcinoembryonic antigen.
    Conaghan P; Ashraf S; Tytherleigh M; Wilding J; Tchilian E; Bicknell D; Mortensen NJ; Bodmer W
    Br J Cancer; 2008 Apr; 98(7):1217-25. PubMed ID: 18349843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. d,l-lysine functionalized Fe
    Antal I; Koneracka M; Kubovcikova M; Zavisova V; Khmara I; Lucanska D; Jelenska L; Vidlickova I; Zatovicova M; Pastorekova S; Bugarova N; Micusik M; Omastova M; Kopcansky P
    Colloids Surf B Biointerfaces; 2018 Mar; 163():236-245. PubMed ID: 29306846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-nanoencapsulation of magnetic nanoparticles and selol for breast tumor treatment: in vitro evaluation of cytotoxicity and magnetohyperthermia efficacy.
    Estevanato LL; Da Silva JR; Falqueiro AM; Mosiniewicz-Szablewska E; Suchocki P; Tedesco AC; Morais PC; Lacava ZG
    Int J Nanomedicine; 2012; 7():5287-99. PubMed ID: 23055734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of iron oxide magnetic nanoparticles functionalized by nisin.
    Gruskiene R; Krivorotova T; Staneviciene R; Ratautas D; Serviene E; Sereikaite J
    Colloids Surf B Biointerfaces; 2018 Sep; 169():126-134. PubMed ID: 29758538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Catch-and-Release" Anti-Carcinoembryonic Antigen Monoclonal Antibody Leads to Greater Plasma and Tumor Exposure in a Mouse Model of Colorectal Cancer.
    Engler FA; Polli JR; Li T; An B; Otteneder M; Qu J; Balthasar JP
    J Pharmacol Exp Ther; 2018 Jul; 366(1):205-219. PubMed ID: 29735609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacologically upregulated carcinoembryonic antigen-expression enhances the cytolytic activity of genetically-modified chimeric antigen receptor NK-92MI against colorectal cancer cells.
    Shiozawa M; Chang CH; Huang YC; Chen YC; Chi MS; Hao HC; Chang YC; Takeda S; Chi KH; Wang YS
    BMC Immunol; 2018 Aug; 19(1):27. PubMed ID: 30075754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ synthesis and characterization of magnetic nanoparticles in shells of biodegradable polyelectrolyte microcapsules.
    Lyubutin IS; Starchikov SS; Bukreeva TV; Lysenko IA; Sulyanov SN; Korotkov NY; Rumyantseva SS; Marchenko IV; Funtov KO; Vasiliev AL
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():225-33. PubMed ID: 25491824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation and in vitro evaluation of magnetoliposomes as a potential nanotool in colorectal cancer therapy.
    Lorente C; Cabeza L; Clares B; Ortiz R; Halbaut L; Delgado ÁV; Perazzoli G; Prados J; Arias JL; Melguizo C
    Colloids Surf B Biointerfaces; 2018 Nov; 171():553-565. PubMed ID: 30096477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic nanoparticles for in vivo use: a critical assessment of their composition.
    da Costa GM; Blanco-Andujar C; De Grave E; Pankhurst QA
    J Phys Chem B; 2014 Oct; 118(40):11738-46. PubMed ID: 25211599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid).
    Thünemann AF; Schütt D; Kaufner L; Pison U; Möhwald H
    Langmuir; 2006 Feb; 22(5):2351-7. PubMed ID: 16489828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman, EELS and XPS studies of maghemite decorated multi-walled carbon nanotubes.
    Zhang W; Stolojan V; Silva SR; Wu CW
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():715-8. PubMed ID: 24374884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low toxic maghemite nanoparticles for theranostic applications.
    Kuchma EA; Zolotukhin PV; Belanova AA; Soldatov MA; Lastovina TA; Kubrin SP; Nikolsky AV; Mirmikova LI; Soldatov AV
    Int J Nanomedicine; 2017; 12():6365-6371. PubMed ID: 28919740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman microscopy allows to follow internalization, subcellular accumulation and fate of iron oxide nanoparticles in cells.
    Rugiel M; Janik-Olchawa N; Kowalczyk J; Pomorska K; Sitarz M; Bik E; Horak D; Babic M; Setkowicz Z; Chwiej J
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 323():124888. PubMed ID: 39116589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advantage of a residualizing iodine radiolabel in the therapy of a colon cancer xenograft targeted with an anticarcinoembryonic antigen monoclonal antibody.
    Stein R; Govindan SV; Hayes M; Griffiths GL; Hansen HJ; Horak ID; Goldenberg DM
    Clin Cancer Res; 2005 Apr; 11(7):2727-34. PubMed ID: 15814655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-CEA tagged iron nanoparticles for targeting triple-negative breast cancer.
    Correa TS; Bocca AL; Figueiredo F; Lima ECO; Almeida Santos MFM; Lacava ZGM; Campos-da-Paz M
    Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33540396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.