These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23055968)

  • 21. EEG Neural Correlates of Self-Paced Left- and Right-Hand Movement Intention during a Reaching Task.
    Yang L; Lu Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2040-2043. PubMed ID: 30440802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EEG neural correlates of goal-directed movement intention.
    Pereira J; Ofner P; Schwarz A; Sburlea AI; Müller-Putz GR
    Neuroimage; 2017 Apr; 149():129-140. PubMed ID: 28131888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training.
    Tsui CS; Gan JQ; Roberts SJ
    Med Biol Eng Comput; 2009 Mar; 47(3):257-65. PubMed ID: 19225819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Homology Characteristics of EEG and EMG for Lower Limb Voluntary Movement Intention.
    Zhang X; Li H; Lu Z; Yin G
    Front Neurorobot; 2021; 15():642607. PubMed ID: 34220479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reaching movement onset- and end-related characteristics of EEG spectral power modulations.
    Demandt E; Mehring C; Vogt K; Schulze-Bonhage A; Aertsen A; Ball T
    Front Neurosci; 2012; 6():65. PubMed ID: 22586364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Movement related slow cortical potentials in severely paralyzed chronic stroke patients.
    Yilmaz O; Birbaumer N; Ramos-Murguialday A
    Front Hum Neurosci; 2014; 8():1033. PubMed ID: 25642177
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multimodal movement prediction - towards an individual assistance of patients.
    Kirchner EA; Tabie M; Seeland A
    PLoS One; 2014; 9(1):e85060. PubMed ID: 24416341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Features for Movement Prediction from Single-Trial Movement-Related Cortical Potentials in Healthy Subjects and Stroke Patients.
    Kamavuako EN; Jochumsen M; Niazi IK; Dremstrup K
    Comput Intell Neurosci; 2015; 2015():858015. PubMed ID: 26161089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstructing Degree of Forearm Rotation from Imagined movements for BCI-based Robot Hand Control.
    Yun YD; Jeong JH; Cho JH; Kim DJ; Lee SW
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3014-3017. PubMed ID: 31946523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.
    Bai O; Lin P; Vorbach S; Li J; Furlani S; Hallett M
    Clin Neurophysiol; 2007 Dec; 118(12):2637-55. PubMed ID: 17967559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unsupervised movement onset detection from EEG recorded during self-paced real hand movement.
    Awwad Shiekh Hasan B; Gan JQ
    Med Biol Eng Comput; 2010 Mar; 48(3):245-53. PubMed ID: 19888613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hierarchical Decoding Model of Upper Limb Movement Intention From EEG Signals Based on Attention State Estimation.
    Bi L; Xia S; Fei W
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2008-2016. PubMed ID: 34559657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detecting and classifying movement-related cortical potentials associated with hand movements in healthy subjects and stroke patients from single-electrode, single-trial EEG.
    Jochumsen M; Niazi IK; Taylor D; Farina D; Dremstrup K
    J Neural Eng; 2015 Oct; 12(5):056013. PubMed ID: 26305233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Review of Techniques for Detection of Movement Intention Using Movement-Related Cortical Potentials.
    Shakeel A; Navid MS; Anwar MN; Mazhar S; Jochumsen M; Niazi IK
    Comput Math Methods Med; 2015; 2015():346217. PubMed ID: 26881008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is EMG a Viable Alternative to BCI for Detecting Movement Intention in Severe Stroke?
    Balasubramanian S; Garcia-Cossio E; Birbaumer N; Burdet E; Ramos-Murguialday A
    IEEE Trans Biomed Eng; 2018 Dec; 65(12):2790-2797. PubMed ID: 29993449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.