These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 23056145)
1. Simulation of arrhythmogenic effect of rogue RyRs in failing heart by using a coupled model. Lu L; Xia L; Zhu X Comput Math Methods Med; 2012; 2012():183978. PubMed ID: 23056145 [TBL] [Abstract][Full Text] [Related]
2. Simulation of the effect of rogue ryanodine receptors on a calcium wave in ventricular myocytes with heart failure. Lu L; Xia L; Ye X; Cheng H Phys Biol; 2010 May; 7(2):026005. PubMed ID: 20505230 [TBL] [Abstract][Full Text] [Related]
3. T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling. Nivala M; Song Z; Weiss JN; Qu Z J Mol Cell Cardiol; 2015 Feb; 79():32-41. PubMed ID: 25450613 [TBL] [Abstract][Full Text] [Related]
5. Decreased inward rectifying K+ current and increased ryanodine receptor sensitivity synergistically contribute to sustained focal arrhythmia in the intact rabbit heart. Myles RC; Wang L; Bers DM; Ripplinger CM J Physiol; 2015 Mar; 593(6):1479-93. PubMed ID: 25772297 [TBL] [Abstract][Full Text] [Related]
6. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft. Dries E; Santiago DJ; Johnson DM; Gilbert G; Holemans P; Korte SM; Roderick HL; Sipido KR J Physiol; 2016 Oct; 594(20):5923-5939. PubMed ID: 27121757 [TBL] [Abstract][Full Text] [Related]
7. Ultrastructural remodelling of Ca(2+) signalling apparatus in failing heart cells. Wu HD; Xu M; Li RC; Guo L; Lai YS; Xu SM; Li SF; Lü QL; Li LL; Zhang HB; Zhang YY; Zhang CM; Wang SQ Cardiovasc Res; 2012 Sep; 95(4):430-8. PubMed ID: 22707157 [TBL] [Abstract][Full Text] [Related]
8. MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. Belevych AE; Sansom SE; Terentyeva R; Ho HT; Nishijima Y; Martin MM; Jindal HK; Rochira JA; Kunitomo Y; Abdellatif M; Carnes CA; Elton TS; Györke S; Terentyev D PLoS One; 2011; 6(12):e28324. PubMed ID: 22163007 [TBL] [Abstract][Full Text] [Related]
9. Oxidation of ryanodine receptor after ischemia-reperfusion increases propensity of Ca Bovo E; Mazurek SR; Zima AV Am J Physiol Heart Circ Physiol; 2018 Oct; 315(4):H1032-H1040. PubMed ID: 30028204 [TBL] [Abstract][Full Text] [Related]
10. Simulation and mechanistic investigation of the arrhythmogenic role of the late sodium current in human heart failure. Trenor B; Cardona K; Gomez JF; Rajamani S; Ferrero JM; Belardinelli L; Saiz J PLoS One; 2012; 7(3):e32659. PubMed ID: 22427860 [TBL] [Abstract][Full Text] [Related]
11. A mathematical model of spontaneous calcium release in cardiac myocytes. Chen W; Aistrup G; Wasserstrom JA; Shiferaw Y Am J Physiol Heart Circ Physiol; 2011 May; 300(5):H1794-805. PubMed ID: 21357507 [TBL] [Abstract][Full Text] [Related]
12. Mitochondria-derived ROS bursts disturb Ca²⁺ cycling and induce abnormal automaticity in guinea pig cardiomyocytes: a theoretical study. Li Q; Su D; O'Rourke B; Pogwizd SM; Zhou L Am J Physiol Heart Circ Physiol; 2015 Mar; 308(6):H623-36. PubMed ID: 25539710 [TBL] [Abstract][Full Text] [Related]
13. Altered spatial calcium regulation enhances electrical heterogeneity in the failing canine left ventricle: implications for electrical instability. Iyer V; Heller V; Armoundas AA J Appl Physiol (1985); 2012 Mar; 112(6):944-55. PubMed ID: 22194323 [TBL] [Abstract][Full Text] [Related]
14. Role of coupled gating between cardiac ryanodine receptors in the genesis of triggered arrhythmias. Chen W; Wasserstrom JA; Shiferaw Y Am J Physiol Heart Circ Physiol; 2009 Jul; 297(1):H171-80. PubMed ID: 19429830 [TBL] [Abstract][Full Text] [Related]
15. The Ca 2+ leak paradox and rogue ryanodine receptors: SR Ca 2+ efflux theory and practice. Sobie EA; Guatimosim S; Gómez-Viquez L; Song LS; Hartmann H; Saleet Jafri M; Lederer WJ Prog Biophys Mol Biol; 2006; 90(1-3):172-85. PubMed ID: 16326215 [TBL] [Abstract][Full Text] [Related]
16. Calcium-voltage coupling in the genesis of early and delayed afterdepolarizations in cardiac myocytes. Song Z; Ko CY; Nivala M; Weiss JN; Qu Z Biophys J; 2015 Apr; 108(8):1908-21. PubMed ID: 25902431 [TBL] [Abstract][Full Text] [Related]
17. From the ryanodine receptor to cardiac arrhythmias. Eisner DA; Kashimura T; Venetucci LA; Trafford AW Circ J; 2009 Sep; 73(9):1561-7. PubMed ID: 19667488 [TBL] [Abstract][Full Text] [Related]
18. Overexpression of adenylyl cyclase type 5 (AC5) confers a proarrhythmic substrate to the heart. Zhao Z; Babu GJ; Wen H; Fefelova N; Gordan R; Sui X; Yan L; Vatner DE; Vatner SF; Xie LH Am J Physiol Heart Circ Physiol; 2015 Feb; 308(3):H240-9. PubMed ID: 25485900 [TBL] [Abstract][Full Text] [Related]
19. Role of CaMKII in RyR leak, EC coupling and action potential duration: a computational model. Hashambhoy YL; Greenstein JL; Winslow RL J Mol Cell Cardiol; 2010 Oct; 49(4):617-24. PubMed ID: 20655925 [TBL] [Abstract][Full Text] [Related]
20. Ca²⁺-induced delayed afterdepolarizations are triggered by dyadic subspace Ca2²⁺ affirming that increasing SERCA reduces aftercontractions. Fink M; Noble PJ; Noble D Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H921-35. PubMed ID: 21666112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]