These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23056148)

  • 1. Diabetic retinopathy grading by digital curvelet transform.
    Hajeb Mohammad Alipour S; Rabbani H; Akhlaghi MR
    Comput Math Methods Med; 2012; 2012():761901. PubMed ID: 23056148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of foveal avascular zone for grading of diabetic retinopathy severity based on curvelet transform.
    Alipour SH; Rabbani H; Akhlaghi M; Dehnavi AM; Javanmard SH
    Graefes Arch Clin Exp Ophthalmol; 2012 Nov; 250(11):1607-14. PubMed ID: 22760960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.
    Jaya T; Dheeba J; Singh NA
    J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Grading of diabetic retinopathy from non-stereoscopic color fundus photographs--relationship to fluorescein angiography findings and three-year prognosis].
    Kitano S
    Nippon Ganka Gakkai Zasshi; 2005 Sep; 109(9):563-72. PubMed ID: 16218434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of foveal avascular zone in diabetic retinopathy digital fundus images.
    Ahmad Fadzil MH; Izhar LI; Nugroho HA
    Comput Biol Med; 2010 Jul; 40(7):657-64. PubMed ID: 20573343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of retinal lesions in diabetic retinopathy: comparative evaluation of 7-field digital color photography versus red-free photography.
    Venkatesh P; Sharma R; Vashist N; Vohra R; Garg S
    Int Ophthalmol; 2015 Oct; 35(5):635-40. PubMed ID: 22961609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy.
    Dupas B; Walter T; Erginay A; Ordonez R; Deb-Joardar N; Gain P; Klein JC; Massin P
    Diabetes Metab; 2010 Jun; 36(3):213-20. PubMed ID: 20219404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis.
    Niemeijer M; van Ginneken B; Russell SR; Suttorp-Schulten MS; Abràmoff MD
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2260-7. PubMed ID: 17460289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis of diabetic retinopathy: automatic extraction of optic disc and exudates from retinal images using marker-controlled watershed transformation.
    Reza AW; Eswaran C; Dimyati K
    J Med Syst; 2011 Dec; 35(6):1491-501. PubMed ID: 20703768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated identification of diabetic retinopathy stages using digital fundus images.
    Nayak J; Bhat PS; Acharya R; Lim CM; Kagathi M
    J Med Syst; 2008 Apr; 32(2):107-15. PubMed ID: 18461814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic tracing of optic disc and exudates from color fundus images using fixed and variable thresholds.
    Reza AW; Eswaran C; Hati S
    J Med Syst; 2009 Feb; 33(1):73-80. PubMed ID: 19238899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-based detection of diabetes retinopathy stages using digital fundus images.
    Acharya UR; Lim CM; Ng EY; Chee C; Tamura T
    Proc Inst Mech Eng H; 2009 Jul; 223(5):545-53. PubMed ID: 19623908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness and safety of screening for diabetic retinopathy with two nonmydriatic digital images compared with the seven standard stereoscopic photographic fields.
    Boucher MC; Gresset JA; Angioi K; Olivier S
    Can J Ophthalmol; 2003 Dec; 38(7):557-68. PubMed ID: 14740797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A new grading system from color fundus photographs for screening for diabetic retinopathy].
    Lecleire-Collet A; Erginay A; Angioi-Duprez K; Deb-Joardar N; Gain P; Massin P
    J Fr Ophtalmol; 2007 Sep; 30(7):674-87. PubMed ID: 17878820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral retinal evaluation comparing fundus photographs with fluorescein angiograms in patients with diabetes mellitus.
    Agardh E; Cavallin-Sjöberg U
    Retina; 1998; 18(5):420-3. PubMed ID: 9801036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entoptic evaluation of diabetic retinopathy.
    Applegate RA; Bradley A; van Heuven WA; Lee BL; Garcia CA
    Invest Ophthalmol Vis Sci; 1997 Apr; 38(5):783-91. PubMed ID: 9112972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of retinal fundus images for grading of diabetic retinopathy severity.
    Ahmad Fadzil MH; Izhar LI; Nugroho H; Nugroho HA
    Med Biol Eng Comput; 2011 Jun; 49(6):693-700. PubMed ID: 21271293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A contribution of image processing to the diagnosis of diabetic retinopathy--detection of exudates in color fundus images of the human retina.
    Walter T; Klein JC; Massin P; Erginay A
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1236-43. PubMed ID: 12585705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic non-proliferative diabetic retinopathy screening system based on color fundus image.
    Xiao Z; Zhang X; Geng L; Zhang F; Wu J; Tong J; Ogunbona PO; Shan C
    Biomed Eng Online; 2017 Oct; 16(1):122. PubMed ID: 29073912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decision support system for the detection and grading of hard exudates from color fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    J Biomed Opt; 2011 Nov; 16(11):116001. PubMed ID: 22112106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.