These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 23056212)
1. Characterization of molecular mechanisms controlling fabAB transcription in Pseudomonas aeruginosa. Schweizer HP; Choi KH PLoS One; 2012; 7(10):e45646. PubMed ID: 23056212 [TBL] [Abstract][Full Text] [Related]
2. Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB). Hoang TT; Schweizer HP J Bacteriol; 1997 Sep; 179(17):5326-32. PubMed ID: 9286984 [TBL] [Abstract][Full Text] [Related]
3. Complex binding of the FabR repressor of bacterial unsaturated fatty acid biosynthesis to its cognate promoters. Feng Y; Cronan JE Mol Microbiol; 2011 Apr; 80(1):195-218. PubMed ID: 21276098 [TBL] [Abstract][Full Text] [Related]
4. DesT coordinates the expression of anaerobic and aerobic pathways for unsaturated fatty acid biosynthesis in Pseudomonas aeruginosa. Subramanian C; Rock CO; Zhang YM J Bacteriol; 2010 Jan; 192(1):280-5. PubMed ID: 19880602 [TBL] [Abstract][Full Text] [Related]
5. Escherichia coli unsaturated fatty acid synthesis: complex transcription of the fabA gene and in vivo identification of the essential reaction catalyzed by FabB. Feng Y; Cronan JE J Biol Chem; 2009 Oct; 284(43):29526-35. PubMed ID: 19679654 [TBL] [Abstract][Full Text] [Related]
6. Suppressor mutants demonstrate the metabolic plasticity of unsaturated fatty acid synthesis in Dong H; Cronan JE Microbiology (Reading); 2023 Oct; 169(10):. PubMed ID: 37818937 [No Abstract] [Full Text] [Related]
7. A cryptic long-chain 3-ketoacyl-ACP synthase in the Pseudomonas putida F1 unsaturated fatty acid synthesis pathway. Dong H; Ma J; Chen Q; Chen B; Liang L; Liao Y; Song Y; Wang H; Cronan JE J Biol Chem; 2021 Aug; 297(2):100920. PubMed ID: 34181948 [TBL] [Abstract][Full Text] [Related]
8. Divergent unsaturated fatty acid synthesis in two highly related model pseudomonads. Dong H; Wang H; Cronan JE Mol Microbiol; 2023 Feb; 119(2):252-261. PubMed ID: 36537550 [TBL] [Abstract][Full Text] [Related]
9. A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. Arora SK; Ritchings BW; Almira EC; Lory S; Ramphal R J Bacteriol; 1997 Sep; 179(17):5574-81. PubMed ID: 9287015 [TBL] [Abstract][Full Text] [Related]
10. Suppression of fabB Mutation by fabF1 Is Mediated by Transcription Read-through in Shewanella oneidensis. Li M; Meng Q; Fu H; Luo Q; Gao H J Bacteriol; 2016 Nov; 198(22):3060-3069. PubMed ID: 27573012 [TBL] [Abstract][Full Text] [Related]
11. The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization. Endoh T; Habe H; Nojiri H; Yamane H; Omori T Mol Microbiol; 2005 Feb; 55(3):897-911. PubMed ID: 15661012 [TBL] [Abstract][Full Text] [Related]
13. PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa. Song J; Jensen RA Mol Microbiol; 1996 Nov; 22(3):497-507. PubMed ID: 8939433 [TBL] [Abstract][Full Text] [Related]
14. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in Pseudomonas aeruginosa. Hobbs M; Collie ES; Free PD; Livingston SP; Mattick JS Mol Microbiol; 1993 Mar; 7(5):669-82. PubMed ID: 8097014 [TBL] [Abstract][Full Text] [Related]
15. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Rehm BH; Mitsky TA; Steinbüchel A Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728 [TBL] [Abstract][Full Text] [Related]
16. Identification and characterization of a siderophore regulatory gene (pfrA) of Pseudomonas putida WCS358: homology to the alginate regulatory gene algQ of Pseudomonas aeruginosa. Venturi V; Ottevanger C; Leong J; Weisbeek PJ Mol Microbiol; 1993 Oct; 10(1):63-73. PubMed ID: 7968519 [TBL] [Abstract][Full Text] [Related]
17. Transcription factors CysB and SfnR constitute the hierarchical regulatory system for the sulfate starvation response in Pseudomonas putida. Kouzuma A; Endoh T; Omori T; Nojiri H; Yamane H; Habe H J Bacteriol; 2008 Jul; 190(13):4521-31. PubMed ID: 18456803 [TBL] [Abstract][Full Text] [Related]
18. Regulation of Pseudomonas aeruginosa virulence factors by two novel RNA thermometers. Grosso-Becerra MV; Croda-García G; Merino E; Servín-González L; Mojica-Espinosa R; Soberón-Chávez G Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15562-7. PubMed ID: 25313031 [TBL] [Abstract][Full Text] [Related]
19. Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Zhu K; Choi KH; Schweizer HP; Rock CO; Zhang YM Mol Microbiol; 2006 Apr; 60(2):260-73. PubMed ID: 16573679 [TBL] [Abstract][Full Text] [Related]
20. Studies on spontaneous promoter-up mutations in the transcriptional activator-encoding gene phIR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida. Burchhardt G; Schmidt I; Cuypers H; Petruschka L; Völker A; Herrmann H Mol Gen Genet; 1997 May; 254(5):539-47. PubMed ID: 9197413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]