These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23056279)

  • 1. Antibodies covalently immobilized on actin filaments for fast myosin driven analyte transport.
    Kumar S; ten Siethoff L; Persson M; Lard M; te Kronnie G; Linke H; Månsson A
    PLoS One; 2012; 7(10):e46298. PubMed ID: 23056279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast molecular motor driven nanoseparation and biosensing.
    Lard M; Ten Siethoff L; Kumar S; Persson M; Te Kronnie G; Linke H; Månsson A
    Biosens Bioelectron; 2013 Oct; 48():145-52. PubMed ID: 23672875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosensing using antibody-modulated motility of actin filaments on myosin-coated surfaces.
    Kekic M; Hanson KL; Perumal AS; Solana G; Rajendran K; Dash S; Nicolau DV; Dobroiu S; Dos Remedios CG; Nicolau DV
    Biosens Bioelectron; 2024 Feb; 246():115879. PubMed ID: 38056344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic capture from blood rescues molecular motor function in diagnostic nanodevices.
    Kumar S; Ten Siethoff L; Persson M; Albet-Torres N; Månsson A
    J Nanobiotechnology; 2013 May; 11():14. PubMed ID: 23638952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transportation of nanoscale cargoes by myosin propelled actin filaments.
    Persson M; Gullberg M; Tolf C; Lindberg AM; Månsson A; Kocer A
    PLoS One; 2013; 8(2):e55931. PubMed ID: 23437074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing protein antigen and microvesicle analytes using high-capacity biopolymer nano-carriers.
    Kumar S; Milani G; Takatsuki H; Lana T; Persson M; Frasson C; te Kronnie G; Månsson A
    Analyst; 2016 Feb; 141(3):836-46. PubMed ID: 26617251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent and non-covalent chemical engineering of actin for biotechnological applications.
    Kumar S; Mansson A
    Biotechnol Adv; 2017 Nov; 35(7):867-888. PubMed ID: 28830772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vesicle transport: the role of actin filaments and myosin motors.
    DePina AS; Langford GM
    Microsc Res Tech; 1999 Oct; 47(2):93-106. PubMed ID: 10523788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of myosin and actin in nanobiotechnology.
    Månsson A
    J Cell Sci; 2023 Mar; 136(5):. PubMed ID: 36861886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alignment of actin filament streams driven by myosin motors in crowded environments.
    Iwase T; Sasaki Y; Hatori K
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2717-2725. PubMed ID: 28754385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of stochastic processes in motile crossbridge systems.
    Pate E; Cooke R
    J Muscle Res Cell Motil; 1991 Aug; 12(4):376-93. PubMed ID: 1939603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin and gelsolin cooperate in actin filament severing and actomyosin motor activity.
    Vemula V; Huber T; Ušaj M; Bugyi B; Månsson A
    J Biol Chem; 2021; 296():100181. PubMed ID: 33303625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.
    Winkelmann DA; Bourdieu L; Kinose F; Libchaber A
    Biophys J; 1995 Apr; 68(4 Suppl):72S. PubMed ID: 7787107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of actin filament movement by monoclonal antibodies against the motor domain of myosin.
    Winkelmann DA; Kinose F; Chung AL
    J Muscle Res Cell Motil; 1993 Aug; 14(4):452-67. PubMed ID: 7693748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceleration of the sliding movement of actin filaments with the use of a non-motile mutant myosin in in vitro motility assays driven by skeletal muscle heavy meromyosin.
    Iwase K; Tanaka M; Hirose K; Uyeda TQP; Honda H
    PLoS One; 2017; 12(7):e0181171. PubMed ID: 28742155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the initiation and termination of kinesin-1-driven transport by myosin-Ic and nonmuscle tropomyosin.
    McIntosh BB; Holzbaur EL; Ostap EM
    Curr Biol; 2015 Feb; 25(4):523-9. PubMed ID: 25660542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collective and contractile filament motions in the myosin motility assay.
    Jung W; Fillenwarth LA; Matsuda A; Li J; Inoue Y; Kim T
    Soft Matter; 2020 Feb; 16(6):1548-1559. PubMed ID: 31942899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active multistage coarsening of actin networks driven by myosin motors.
    Soares e Silva M; Depken M; Stuhrmann B; Korsten M; MacKintosh FC; Koenderink GH
    Proc Natl Acad Sci U S A; 2011 Jun; 108(23):9408-13. PubMed ID: 21593409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The stepping pattern of myosin X is adapted for processive motility on bundled actin.
    Ricca BL; Rock RS
    Biophys J; 2010 Sep; 99(6):1818-26. PubMed ID: 20858426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement of single myosin filaments and myosin step size on an actin filament suspended in solution by a laser trap.
    Saito K; Aoki T; Aoki T; Yanagida T
    Biophys J; 1994 Mar; 66(3 Pt 1):769-77. PubMed ID: 8011909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.