These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 23056455)
1. Potassium acts as a GTPase-activating element on each nucleotide-binding domain of the essential Bacillus subtilis EngA. Foucher AE; Reiser JB; Ebel C; Housset D; Jault JM PLoS One; 2012; 7(10):e46795. PubMed ID: 23056455 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulation study on N U; S K J Biomol Struct Dyn; 2022 Feb; 40(3):1387-1399. PubMed ID: 33016853 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulation study on Upendra N; Kavya KM; Krishnaveni S J Biomol Struct Dyn; 2023 Nov; 41(19):9219-9231. PubMed ID: 36444972 [TBL] [Abstract][Full Text] [Related]
5. Distinct GDP/GTP bound states of the tandem G-domains of EngA regulate ribosome binding. Tomar SK; Dhimole N; Chatterjee M; Prakash B Nucleic Acids Res; 2009 Apr; 37(7):2359-70. PubMed ID: 19246542 [TBL] [Abstract][Full Text] [Related]
6. Domain arrangement of Der, a switch protein containing two GTPase domains. Robinson VL; Hwang J; Fox E; Inouye M; Stock AM Structure; 2002 Dec; 10(12):1649-58. PubMed ID: 12467572 [TBL] [Abstract][Full Text] [Related]
13. Functional analysis of the GTPases EngA and YhbZ encoded by Salmonella typhimurium. Lamb HK; Thompson P; Elliott C; Charles IG; Richards J; Lockyer M; Watkins N; Nichols C; Stammers DK; Bagshaw CR; Cooper A; Hawkins AR Protein Sci; 2007 Nov; 16(11):2391-402. PubMed ID: 17905831 [TBL] [Abstract][Full Text] [Related]
14. The essential GTPase YphC displays a major domain rearrangement associated with nucleotide binding. Muench SP; Xu L; Sedelnikova SE; Rice DW Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12359-64. PubMed ID: 16894162 [TBL] [Abstract][Full Text] [Related]
15. The essential GTPase YqeH is required for proper ribosome assembly in Bacillus subtilis. Uicker WC; Schaefer L; Koenigsknecht M; Britton RA J Bacteriol; 2007 Apr; 189(7):2926-9. PubMed ID: 17237168 [TBL] [Abstract][Full Text] [Related]
16. Mutational analysis of the ribosome assembly GTPase RbgA provides insight into ribosome interaction and ribosome-stimulated GTPase activation. Gulati M; Jain N; Anand B; Prakash B; Britton RA Nucleic Acids Res; 2013 Mar; 41(5):3217-27. PubMed ID: 23325847 [TBL] [Abstract][Full Text] [Related]
17. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. Updegrove TB; Harke J; Anantharaman V; Yang J; Gopalan N; Wu D; Piszczek G; Stevenson DM; Amador-Noguez D; Wang JD; Aravind L; Ramamurthi KS Elife; 2021 Mar; 10():. PubMed ID: 33704064 [TBL] [Abstract][Full Text] [Related]
18. Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly. Zhang X; Yan K; Zhang Y; Li N; Ma C; Li Z; Zhang Y; Feng B; Liu J; Sun Y; Xu Y; Lei J; Gao N Nucleic Acids Res; 2014 Dec; 42(21):13430-9. PubMed ID: 25389271 [TBL] [Abstract][Full Text] [Related]
19. Molecular modeling study for interaction between Bacillus subtilis Obg and Nucleotides. Lee Y; Bang WY; Kim S; Lazar P; Kim CW; Bahk JD; Lee KW PLoS One; 2010 Sep; 5(9):e12597. PubMed ID: 20830302 [TBL] [Abstract][Full Text] [Related]
20. Dimerisation-dependent GTPase reaction of MnmE: how potassium acts as GTPase-activating element. Scrima A; Wittinghofer A EMBO J; 2006 Jun; 25(12):2940-51. PubMed ID: 16763562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]