These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 23056539)
1. Early chronotype and tissue-specific alterations of circadian clock function in spontaneously hypertensive rats. Sládek M; Polidarová L; Nováková M; Parkanová D; Sumová A PLoS One; 2012; 7(10):e46951. PubMed ID: 23056539 [TBL] [Abstract][Full Text] [Related]
2. Diverse development and higher sensitivity of the circadian clocks to changes in maternal-feeding regime in a rat model of cardio-metabolic disease. Olejníková L; Polidarová L; Paušlyová L; Sládek M; Sumová A Chronobiol Int; 2015 May; 32(4):531-47. PubMed ID: 25839096 [TBL] [Abstract][Full Text] [Related]
3. Circadian alignment in a foster mother improves the offspring's pathological phenotype. Olejníková L; Polidarová L; Behuliak M; Sládek M; Sumová A J Physiol; 2018 Dec; 596(23):5757-5775. PubMed ID: 29748957 [TBL] [Abstract][Full Text] [Related]
4. Increased sensitivity of the circadian system to temporal changes in the feeding regime of spontaneously hypertensive rats - a potential role for Bmal2 in the liver. Polidarová L; Sládek M; Nováková M; Parkanová D; Sumová A PLoS One; 2013; 8(9):e75690. PubMed ID: 24086613 [TBL] [Abstract][Full Text] [Related]
5. Stress affects expression of the clock gene Bmal1 in the suprachiasmatic nucleus of neonatal rats via glucocorticoid-dependent mechanism. Olejníková L; Polidarová L; Sumová A Acta Physiol (Oxf); 2018 May; 223(1):e13020. PubMed ID: 29266826 [TBL] [Abstract][Full Text] [Related]
7. Entrainment of spontaneously hypertensive rat fibroblasts by temperature cycles. Sládek M; Sumová A PLoS One; 2013; 8(10):e77010. PubMed ID: 24116198 [TBL] [Abstract][Full Text] [Related]
8. Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Polidarová L; Sládek M; Soták M; Pácha J; Sumová A Chronobiol Int; 2011 Apr; 28(3):204-15. PubMed ID: 21452916 [TBL] [Abstract][Full Text] [Related]
9. The control of circadian rhythms and the levels of vasoactive intestinal peptide mRNA in the suprachiasmatic nucleus are altered in spontaneously hypertensive rats. Peters RV; Zoeller RT; Hennessey AC; Stopa EG; Anderson G; Albers HE Brain Res; 1994 Mar; 639(2):217-27. PubMed ID: 8205475 [TBL] [Abstract][Full Text] [Related]
10. The light-dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. Husse J; Leliavski A; Tsang AH; Oster H; Eichele G FASEB J; 2014 Nov; 28(11):4950-60. PubMed ID: 25063847 [TBL] [Abstract][Full Text] [Related]
11. Different mechanisms of adjustment to a change of the photoperiod in the suprachiasmatic and liver circadian clocks. Sosniyenko S; Parkanová D; Illnerová H; Sládek M; Sumová A Am J Physiol Regul Integr Comp Physiol; 2010 Apr; 298(4):R959-71. PubMed ID: 20071612 [TBL] [Abstract][Full Text] [Related]
12. The adrenal gland circadian clock exhibits a distinct phase advance in spontaneously hypertensive rats. Tanaka S; Ueno T; Tsunemi A; Nagura C; Tahira K; Fukuda N; Soma M; Abe M Hypertens Res; 2019 Feb; 42(2):165-173. PubMed ID: 30464218 [TBL] [Abstract][Full Text] [Related]
13. Exposure of pregnant rats to restricted feeding schedule synchronizes the SCN clocks of their fetuses under constant light but not under a light-dark regime. Nováková M; Sládek M; Sumová A J Biol Rhythms; 2010 Oct; 25(5):350-60. PubMed ID: 20876815 [TBL] [Abstract][Full Text] [Related]
14. Rhythmic clock gene expression in heart, kidney and some brain nuclei involved in blood pressure control in hypertensive TGR(mREN-2)27 rats. Herichová I; Mravec B; Stebelová K; Krizanová O; Jurkovicová D; Kvetnanský R; Zeman M Mol Cell Biochem; 2007 Feb; 296(1-2):25-34. PubMed ID: 16909304 [TBL] [Abstract][Full Text] [Related]
15. Restricted feeding regime affects clock gene expression profiles in the suprachiasmatic nucleus of rats exposed to constant light. Nováková M; Polidarová L; Sládek M; Sumová A Neuroscience; 2011 Dec; 197():65-71. PubMed ID: 21952132 [TBL] [Abstract][Full Text] [Related]
16. Development of the mammalian circadian clock. Honma S Eur J Neurosci; 2020 Jan; 51(1):182-193. PubMed ID: 30589961 [TBL] [Abstract][Full Text] [Related]
17. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Bonaconsa M; Malpeli G; Montaruli A; Carandente F; Grassi-Zucconi G; Bentivoglio M Exp Gerontol; 2014 Jul; 55():70-9. PubMed ID: 24674978 [TBL] [Abstract][Full Text] [Related]
18. Variations in Phase and Amplitude of Rhythmic Clock Gene Expression across Prefrontal Cortex, Hippocampus, Amygdala, and Hypothalamic Paraventricular and Suprachiasmatic Nuclei of Male and Female Rats. Chun LE; Woodruff ER; Morton S; Hinds LR; Spencer RL J Biol Rhythms; 2015 Oct; 30(5):417-36. PubMed ID: 26271538 [TBL] [Abstract][Full Text] [Related]
19. Human chronotype is determined in bodily cells under real-life conditions. Nováková M; Sládek M; Sumová A Chronobiol Int; 2013 May; 30(4):607-17. PubMed ID: 23445508 [TBL] [Abstract][Full Text] [Related]
20. Circadian peak dopaminergic activity response at the biological clock pacemaker (suprachiasmatic nucleus) area mediates the metabolic responsiveness to a high-fat diet. Luo S; Zhang Y; Ezrokhi M; Li Y; Tsai TH; Cincotta AH J Neuroendocrinol; 2018 Jan; 30(1):. PubMed ID: 29224246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]