BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 23057020)

  • 1. Effects of titanium particle size on osteoblast functions in vitro and in vivo.
    Choi MG; Koh HS; Kluess D; O'Connor D; Mathur A; Truskey GA; Rubin J; Zhou DX; Sung KL
    Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4578-83. PubMed ID: 15755807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering a Hybrid Ti6Al4V-Based System for Responsive and Consistent Osteogenesis.
    Melo-Fonseca F; Gasik M; Cruz A; Moreira D; S Silva F; Miranda G; Mendes Pinto I
    ACS Omega; 2024 Feb; 9(8):8985-8994. PubMed ID: 38434873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces.
    Han J; Ma Q; An Y; Wu F; Zhao Y; Wu G; Wang J
    J Nanobiotechnology; 2023 Aug; 21(1):277. PubMed ID: 37596638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aptamer-Functionalized Natural Protein-Based Polymers as Innovative Biomaterials.
    Girotti A; Escalera-Anzola S; Alonso-Sampedro I; González-Valdivieso J; Arias FJ
    Pharmaceutics; 2020 Nov; 12(11):. PubMed ID: 33228250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Commentary: A Cost-Effective Method to Enhance Adenoviral Transduction of Primary Murine Osteoblasts and Bone Marrow Stromal Cells.
    Sharma A; Goring A; Clarkin CE
    Front Endocrinol (Lausanne); 2020; 11():419. PubMed ID: 32670202
    [No Abstract]   [Full Text] [Related]  

  • 6. Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants.
    Damiati L; Eales MG; Nobbs AH; Su B; Tsimbouri PM; Salmeron-Sanchez M; Dalby MJ
    J Tissue Eng; 2018; 9():2041731418790694. PubMed ID: 30116518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of photofunctionalized gold nanoparticles on osseointegration.
    Elkhidir Y; Lai R; Feng Z
    Heliyon; 2018 Jul; 4(7):e00662. PubMed ID: 30094359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.
    Felgueiras HP; Aissa IB; Evans MD; Migonney V
    J Mater Sci Mater Med; 2015 Nov; 26(11):261. PubMed ID: 26449451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-activity relationship of human bone sialoprotein peptides.
    Rapuano BE; MacDonald DE
    Eur J Oral Sci; 2013 Dec; 121(6):600-9. PubMed ID: 24103036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy promote bone formation and osseointegration.
    MacDonald DE; Rapuano BE; Vyas P; Lane JM; Meyers K; Wright T
    J Cell Biochem; 2013 Oct; 114(10):2363-74. PubMed ID: 23649564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of five proteins on stem cells used for osteoblast differentiation and proliferation: a current review of the literature.
    Chatakun P; Núñez-Toldrà R; Díaz López EJ; Gil-Recio C; Martínez-Sarrà E; Hernández-Alfaro F; Ferrés-Padró E; Giner-Tarrida L; Atari M
    Cell Mol Life Sci; 2014 Jan; 71(1):113-42. PubMed ID: 23568025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat and radiofrequency plasma glow discharge pretreatment of a titanium alloy: evidence [corrected] for enhanced osteoinductive properties.
    Rapuano BE; Singh H; Boskey AL; Doty SB; MacDonald DE
    J Cell Biochem; 2013 Aug; 114(8):1917-27. PubMed ID: 23494951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat or radiofrequency plasma glow discharge treatment of a titanium alloy stimulates osteoblast gene expression in the MC3T3 osteoprogenitor cell line.
    Rapuano BE; Hackshaw K; Macdonald DE
    J Periodontal Implant Sci; 2012 Jun; 42(3):95-104. PubMed ID: 22803011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of coating a titanium alloy with fibronectin on the expression of osteoblast gene markers in the MC3T3 osteoprogenitor cell line.
    Rapuano BE; Hackshaw KM; Schniepp HC; MacDonald DE
    Int J Oral Maxillofac Implants; 2012; 27(5):1081-90. PubMed ID: 23057020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.
    MacDonald DE; Rapuano BE; Deo N; Stranick M; Somasundaran P; Boskey AL
    Biomaterials; 2004 Jul; 25(16):3135-46. PubMed ID: 14980408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture.
    Shapira L; Klinger A; Tadir A; Wilensky A; Halabi A
    Clin Oral Implants Res; 2009 Jun; 20(6):578-82. PubMed ID: 19530314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces.
    Colombo JS; Carley A; Fleming GJ; Crean SJ; Sloan AJ; Waddington RJ
    Int J Oral Maxillofac Implants; 2012; 27(5):1029-42. PubMed ID: 23057015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium.
    Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T
    Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.